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Abstract. Upward planarity testing, or checking whether a directed
graph has a drawing in which no edges cross and all edges point upward,
is NP-complete. All of the algorithms for upward planarity testing de-
veloped previously focused on special classes of graphs. In this paper we
develop a parameterized algorithm for upward planarity testing that can
be applied to all graphs and runs in O(f(k)n3 + g(k, `)n) time, where n

is the number of vertices, k is the number of triconnected components,
and ` is the number of cutvertices. The functions f(k) and g(k, `) are

defined as f(k) = k!8k and g(k, `) = 23·2
`

k3·2
`

k!8k. Thus if the num-
ber of triconnected components and the number of cutvertices are small,
the problem can be solved relatively quickly, even for a large number of
vertices. This is the first parameterized algorithm for upward planarity
testing.

1 Introduction

The area of graph drawing deals with geometric representations of abstract
graphs, and has applications in many different areas such as software architec-
ture, database design, project management, electronic circuits, and genealogy.
These geometrical representations, known as graph drawings, represent each ver-
tex as a point on the plane, and each edge as a curve connecting its two endpoints.
Broader treatments of graph drawing are given by Di Battista et al. [6] and by
Kaufmann and Wagner [21]. In our discussion of algorithmic results for graphs,
we will use the number of vertices, n, as the input size.

Upward planarity testing, or determining whether or not a directed graph can
be drawn with no edge crossings such that all edges are drawn upward, is NP-
complete [17]. An example of an upward planar drawing is shown in Figure 1.
In this paper, we will show how to apply parameterized complexity techniques
to solve upward planarity testing. We show how to test upward planarity in

O(k!8kn3 + 23·2
`

k3·2
`

k!8kn) time, where k is the number of triconnected compo-
nents in the graph and ` is the number of cutvertices. If the graph is biconnected,
we give a O(k!8kn3) time algorithm. Thus if k is small, we can do upward pla-
narity testing efficiently.
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Fig. 1. An example of an upward planar drawing

A common approach to solve the problem of upward planarity testing is to
look at special classes of graphs. Polynomial-time algorithms have been given for
st-graphs [9], bipartite graphs [8], triconnected graphs [2], outerplanar graphs
[22], and single-source graphs [3, 19]. Di Battista and Liotta [7] give a linear time
algorithm that checks whether a given drawing is upward planar. Combinatorial
characterizations for upward planarity are given by Tamassia and Tollis [25], Di
Battista and Tamassia [9], Thomassen [27], and Hutton and Lubiw [19].

For some applications, upward planarity requirements may not be sufficient,
or may be too strict. Jünger et al. [20] investigate proper layered drawings,
Bertolazzi et al. [1] introduce quasi-upward planarity, and Di Battista et al. [10]
investigate the area requirements for upward drawings.

Parameterized complexity, introduced by Downey and Fellows [12] is a tech-
nique to develop algorithms that are polynomial in the size of the input, but pos-
sibly exponential in one or more parameters, and hence efficient for small fixed
parameter values. Although this is the first application of parameterized com-
plexity to upward planarity testing, it has been applied to solve some other prob-
lems in graph drawing. Peng [23] investigates applying the concept of treewidth
and pathwidth to graph drawing. Parameterized algorithms have been devel-
oped for layered graph drawings [13, 14], three-dimensional drawings of graphs
of bounded path-width [16], the one-sided crossing maximization problem [15],
and the two-layer planarization problem [24].

This paper is organized as follows: in Section 2, we define terms that we use
in this paper. In Section 3, we develop a parameterized algorithm for upward
planarity testing in biconnected graphs. We will then show how to join together
biconnected components: given two components G1 and G2 to joined at vertices
v1 ∈ V (G1) and v2 ∈ V (G2), we draw one component within a face of the other,
draw an edge from v1 to v2, and contract the edge. Thus we must investigate the
effects of edge contraction in upward planar graphs (Section 4). We also define
a notion of node accessibility in Section 5, which will determine when the edge
(v1, v2) can be drawn. In Section 6, we use the results from the previous sections
to join together biconnected components, giving us a parameterized algorithm
for upward planarity testing in general graphs.
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2 Definitions

In this paper, we assume the reader is familiar with the standard definitions of
graphs and directed graphs, which can be found in a basic graph theory book
[4, 11]. Given a graph G, we denote by V (G) and E(G) the sets of its vertices
and edges, respectively. If there is no confusion as to which graphs we refer,
we may simply write V and E. Unless otherwise specified, all graphs in this
paper are directed simple graphs. In this paper, we adopt the convention of
using lowercase Roman letters to represent vertices and lowercase Greek letters
to represent edges.

A graph is biconnected (triconnected) if between any two vertices, there are
at least two (three) vertex-disjoint paths. A cutvertex is a vertex whose removal
disconnects the graph.

Given vertex v in a directed graph, its indegree (outdegree), denoted deg−(v)
(deg+(v)), is the number of incoming (outgoing) edges. A vertex with no incom-
ing (outgoing) edges is called a source (sink).

A drawing ϕ of a graph G is a mapping of vertices to points on the plane,
and edges to curves such that the endpoints of the curve are located at the
vertices incident to the edge. In the case of directed graphs, each curve has an
associated direction corresponding to the direction of the edge. We say that a
curve is monotone if every horizontal line intersects the curve at most once. A
graph is planar if it has a drawing in which no edges cross. A directed graph is
upward planar if it has a planar drawing in which all edges are monotone and
directed upwards.

A planar drawing partitions the plane into regions called faces. The infinite,
or unbounded, face is called the outer face.

A drawing ϕ defines, for each vertex v, a clockwise ordering of the edges
around v. The collection Γ of the clockwise orderings of the edges for each
vertex is called a (planar) embedding. If edge ε2 comes immediately after ε1 in
the clockwise ordering around v, then we say that ε1 and ε2 are edge-ordering
neighbours, ε2 is the clockwise neighbour of ε1 around v, and ε1 is the counter-
clockwise neighbour of ε2.

In an upward planar drawing, all incoming edges to v must be consecutive, as
must all outgoing edges [25]. Thus for each vertex, we can partition the clockwise
ordering of its edges into two linear lists of outgoing and incoming edges. We call
the collection of these lists an upward planar embedding. If v is a source (sink),
then the first and last edges in the list of outgoing (incoming) edges specify a
face. Using the terminology of Bertolazzi et al. [2], we say that v is a big angle
on that face.

If a vertex v has incoming edge ε1 and outgoing edge ε2 that are edge ordering
neighbours, then we say that the face that contains ε1 and ε2 as part of its
boundary is flattenable at v.

We contract an edge ε = (v, w) by removing v and w, along with their
incident edges. We then add a new vertex vε, and for each edge (u, v) or (u, w)
in E(G), we add the edge (u, vε). For each edge (v, u) or (w, u), we add the
edge (vε, u). The resulting graph is denoted G/ε. Given an embedding Γ of G,
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we construct an embedding of G/ε, denoted Γ/ε, as follows: for each vertex
u 6= v, w, the clockwise ordering of edges around u remains the same. We then
construct the clockwise ordering around vε by first adding the edges incident
to v in order, starting with the clockwise neighbour of ε around v and ending
with the counter-clockwise neighbour of ε, then adding the edges incident to w
in order, starting with the clockwise neighbour of ε around w and ending with
the counter-clockwise neighbour of ε. We note that Γ/ε may not be an upward
planar embedding, even if Γ was; we investigate this further in Section 4.

3 Biconnected components

We first consider only biconnected components; in Section 6, we show how to
connect these components together. Our goal for this section is to bound the
number of possible planar embeddings of a biconnected graph by a function
f(k), where k is the number of triconnected components in the graph, which
will allow us to obtain a parameterized algorithm for upward planarity testing.

Theorem 1. Given a planar biconnected graph G that has k triconnected com-
ponents, G has at most k!8k−1 possible planar embeddings, up to reversal of all
the edge orderings.

Proof. (outline) We first show that given two vertices in an embedded tricon-
nected graph, there are at most two faces that contain both vertices. From this,
we can show that given two triconnected components G1 and G2 of G that share
a common vertex v, there are at most eight possible embeddings of G1 ∪ G2.
The eight embeddings come from the fact that there are at most two faces of
G1 in which G2 can be drawn (which are the two faces that contain both v and
another vertex that lies on a path from G1 to G2), and vice versa, and that
there are two possibilities for the edge orderings of G2 with respect to G1. From
this, we can show that if G has k triconnected components G1, . . . , Gk that all
share a common vertex, there are at most (k − 1)!8k−1 possible embeddings of
G1 ∪ · · · ∪ Gk. Since there are at most k shared vertices between triconnected
components, we have at most k(k − 1)!8k−1 = k!8k−1 embeddings. ut

Using this bound, we can produce a parameterized algorithm that tests
whether G is upward planar.

Theorem 2. There is an O(k!8kn3)-time algorithm to test whether a bicon-
nected graph is upward planar, where n is the number of vertices and k is the
number of triconnected components.

Proof. Our algorithm works as follows: first it divides the input graph G into
triconnected components, which can be done in quadratic time [18]. It then tests
each possible embedding of G for upward planarity. By Theorem 1, we have
k!8k−1 embeddings. From Euler’s formula, we know that for each embedding,
there are at most n possible outer faces. Bertolazzi et al. [2] give a quadratic-time
algorithm to determine whether a given embedding and outer face correspond
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to an upward planar drawing. Thus we can run the algorithm for each possible
embedding and outer face, giving a time complexity of O(k!8kn3). ut

Our bound on the number of possible embeddings is, in many cases, much
larger than the actual number of possible embeddings. For example, if each
vertex is common to at most two triconnected components, we have only 8k−1

possible embeddings, rather than k!8k−1. We also note that Theorem 1 does not
depend on upward planarity. Therefore a similar technique could be applied to
other graph drawing problems in which we have an algorithm that solves the
problem given a specific embedding.

4 Edge contraction

We now investigate how we can join upward planar embeddings of biconnected
graphs in order to obtain an upward planar embedding of a general graph. The
joining is achieved by first connecting the biconnected graphs with an edge, and
then contracting the edge. Thus we will first examine the effect of edge contrac-
tion on upward embeddings. Notably, we will determine conditions under which
contraction of an edge in an upward planar embedding produces an embedding
that is still upward planar.

Throughout this section, we let G be an upward planar graph with upward
planar embedding Γ , and let ε = (s, t) be the edge that we wish to contract.
We also assume that both s and t have degree greater than one; if not, it is
easy to see that contracting ε will result in an upward planar embedding. Thus
we will consider the edge-ordering neighbours of ε. Throughout this section, we
will use the following labels. Let α = (a, t) and β = (b, t) be the clockwise and
counterclockwise neighbours, respectively, of ε around t in the embedding Γ , and
let γ = (c, s) and δ = (d, s) be the counterclockwise and clockwise neighbours of
ε around s (Figure 2 a).

??

? ?...
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ε
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s δ

βα
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a
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ed

Fig. 2. The vertices around the edge ε, and the edge orientations that we consider.
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Since ε is an arbitrary edge, we must consider the orientations of α, β, γ,
and δ. As shorthand, if α or β is oriented towards t, we say that it is oriented
inward, and similarly for when γ or δ is oriented towards s. If α or β is oriented
away from t, we say that it is oriented outward, and similarly for γ and δ.

In this paper, we will only consider the four cases for the orientations of α, β,
γ, and δ that will be used in Section 6, and we only give the lemma statements.
The remaining cases, as well as the complete proofs, are given in the thesis from
which this work is derived [5].

Case 1 α and β oriented outward, γ and δ oriented arbitrarily (Figure 2b),
Case 2 γ and δ oriented inward, α and β oriented arbitrarily (Figure 2c),
Case 3 α and γ oriented outward, β and δ oriented inward (Figure 2d), and
Case 4 α and γ oriented inward, β and δ oriented outward (Figure 2e)

In all four cases, we show that G/ε is upward planar with embedding Γ/ε.
The proof of Lemma 1, which proves Cases 1 and 2, is a straightforward extension
of a lemma by Hutton and Lubiw [19], and Lemma 2, which proves Cases 3 and
4, can be easily shown using the characterization given by Bertolazzi et al. [2].
We omit both proofs.

Lemma 1. If deg−(t) = 1 (deg+(s) = 1), then G/ε is upward planar with
upward planar embedding Γ/ε. ut

Lemma 2. If the edges α and γ are oriented outward (inward), and β and δ
are oriented inward (outward), then G/ε is upward planar with upward planar
embedding Γ/ε. ut

5 Node Accessibility

We now define a notion of accessibility of vertices from different parts of the
outer face, namely the area above or below the drawing of G. This, along with
the edge contraction results from the previous section, will help us join together
upward planar subgraphs.

Given an upward planar graph G with a specified upward planar embedding
Γ and outer face F , we say that the vertex v is accessible from above (below) if
there is an upward planar drawing of G corresponding to the specified embedding
and outer face such that a monotone curve that does not cross any edges can be
drawn from v to a point above (below) the drawing of G.

Note that if a monotone curve can be drawn from v to a point p above the
drawing of G, we can draw a monotone curve from v to any other point q above
the drawing of G by appropriately modifying the curve from v to p. Therefore
our definition of accessibility from above is not dependent on the point to which
we draw the curve.

In order to efficiently test whether or not a vertex is accessible from above
or from below, we wish to derive conditions for vertex accessibility that we can
obtain directly from the planar embedding, rather than from a graph drawing.
With the conditions below, we can test whether a vertex v is accessible from
above or from below in O(n) time.
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Theorem 3. If the vertex v is on the outer face and has an outgoing (incoming)
edge ε that is on the outer face, then v is accessible from above (below).

Proof. (outline) We can first show an equivalent definition of accessibility from
above and from below: v is accessible from above if there is an upward planar
drawing of G such that we can draw a monotone curve from v to a point p that
is above v and on the outer face. The point p need not be above the drawing
of G. Proving that this definition is equivalent is long and largely technical. To
prove it, we show how to take a drawing in which we can draw a monotone curve
from v to p, and modify this drawing so that we can draw a new curve from v
to a new point q that is above the drawing of G.

It is then easy to see that if v has an outgoing edge on the outer face, then
we can draw a curve from v to a point above v on the outer face. ut

Theorem 4. A source (sink) v is accessible from below (above) if and only if it
is a big angle on the outer face.

Proof. As shown by Bertolazzi et al. [2], in any upward planar drawing of G, if
v is a big angle on the outer face, then the angle of the outer face formed at
v must be greater than 180◦, and hence the outer face must include some area
below v. Thus using the alternate definition of accessibility from the proof of the
previous theorem, we can draw a monotone curve from v to a point below v on
the outer face, and hence v is accessible from below.

To show the other direction, we note that if v is a source, there is only one
face below v, and hence v must be a big angle on that face. Since v is accessible
from below, that face must be the outer face. ut

6 Joining biconnected components

We are now ready to show how to join multiple upward planar biconnected
components to form a larger upward planar graph. Throughout this section,
we let G1, . . . , Gk, with upward planar embeddings Γ1, . . . , Γk and outer faces
F1, . . . , Fk, be connected (not necessarily biconnected) components. We will start
by joining the components by identifying the vertices v1 ∈ V (G1), . . . , vk ∈

V (Gk). The resulting graph we call G, with upward planar embedding Γ . By
repeating this process, we can construct any arbitrary graph, starting from its
biconnected components.

To help us prove our conditions for joining graphs, we first show that for all
i, except for at most one, vi must be on the outer face of the corresponding Gi

in order for G to be upward planar.

Lemma 3. If there exist more than one value of i such that Gi does not have an
upward planar embedding with vi on the outer face then G is not upward planar.

Proof. (outline) We assume that we are given an upward planar drawing of G,
and show that if we consider this drawing, restricted to the subgraph Gi, then
vi must be on the outer face for i > 1. ut
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Fig. 3. Joining Gj to Gj−1 and then to Gj−2 when vj , vj−1, and vj−2 are all sources.

We identify three cases that we will use to join together components to
construct arbitrary graphs.

Case 1 All vi are sources, or are all sinks.
Case 2 k = 2 and v1 is a source or a sink.
Case 3 None of the vi’s are sources or sinks, and are not cutvertices.

The way in which we will use these cases is as follows: we will join together all
components in which vi is a source to form a larger component by using Case
1. Similarly, we join together all components in which vi is a sink. Using Case
3, we join together all components in which vi is neither a source nor a sink.
Finally, using Case 2, we join together the three new components. In each case,
we give necessary and sufficient conditions for the upward planarity of G.

Theorem 5. If vi is a source (sink) for all i, then G is upward planar if and
only if for all j > 1, Gj has an upward planar drawing in which vj is on the
outer face.

Proof. Since vj is on the outer face and is a source, it must have an outgoing
edge on the outer face, and so by Theorem 3, must be accessible from above.
So we can draw Gj−1 in the outer face of Gj above vj , draw an edge from vj

to vj−1 and contract the edge, using Lemma 1, as illustrated in Figure 3. We
start this procedure from the last component, and note that if vj and vj−1 are
on the outer faces in their respective components, then after vj and vj−1 have
been identified, the new vertex is still a source on the outer face of the new
component.

The other direction follows directly from Lemma 3. ut

Theorem 6. Given two components G1 and G2 where v1 is a source (sink), G
is upward planar if and only if G1 has an upward planar embedding in which
v1 is accessible from below (above), or G2 has an upward planar embedding in
which v2 is accessible from above (below).

Proof. (outline) We omit the proof that the condition is sufficient as the proof
is similar to the proof above. To show the other direction, we assume that G
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is upward planar, v1 is not accessible from below, and v2 is not accessible from
above. We first show that if v1 and v2 are not cutvertices of their respective
components, then G is not upward planar. We do this by showing that if v1 and
v2 are cutvertices, then G1 is drawn entirely within a single face of G2. We then
consider the faces of G2 in which G1 can be drawn, and show that in every case
we obtain a contradiction.

We then show that if v1 is a cutvertex, we can find a subgraph of G1 in
which v1 is not a cutvertex and is not accessible from below. Similarly, if v2 is a
cutvertex, we can find a subgraph of G2 in which v2 is not a cutvertex and is not
accessible from above. From the result above, these two subgraphs cannot be
joined to yield an upward planar graph. Since this subgraph of G is not upward
planar, G cannot be upward planar. ut

Theorem 7. If for all i vi has indegree and outdegree at least 1 and vi is not a
cutvertex, then G is upward planar if and only if for all i > 1, Gi has an upward
planar embedding in which the outer face Fi is flattenable at vi.

Proof. (outline) Again, we omit the proof that the condition is sufficient. We
assume that we are only given two components G1 and G2 such that Fi is
not flattenable at vi: if we have more than two components such that Fi is
not flattenable at vi for more than one value of i, we can take any two such
components as G1 and G2 and show that G is not upward planar. Again, since
v1 and v2 are not cutvertices, in any upward planar drawing of G, G1 must be
drawn entirely within a single face of G2 and vice versa, and in all cases, we
obtain a contradiction and hence G cannot be upward planar. ut

We can now give a fixed-parameter algorithm for determining when a graph
is upward planar, with the parameter being the number of triconnected compo-
nents and the number of cutvertices.

Theorem 8. There is an O(k!8kn3 + 23·2
`

k3·2
`

k!8kn)-time algorithm to test
whether a graph G is upward planar, where n is the number of vertices, k is
the number of triconnected components, and ` is the number of cutvertices.

Proof. (outline) Our algorithm works by splitting G into biconnected compo-
nents, generating all possible upward planar embeddings for the biconnected
components, and joining them together, keeping track of all possible upward
planar embeddings for the new components.

We can G split into biconnected components in O(n) time [26]. For each
biconnected component, we generate all possible upward planar embeddings,
along with their possible outer faces, as shown in Section 3. In total, this takes
O(k!8kn3) time, and generates at most k!8k−1 embeddings.

For each cutvertex v, we first join together all components in which v has
indegree and outdegree at least one by using Theorem 7, producing the new
component G×. We then use Theorem 5 to join together all components in which
v is a source, producing G∨, and all components in which v is a sink, producing
G∧. Then, using Theorem 6, we join G∨ to G× and join G∧ to the resulting
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component, producing a new component Gv. We remove all the components
that contained v, replace them with Gv , and continue inductively. In this step,
we may also detect that no possible upward planar embedding exists.

Since the conditions given by the theorems in this section only depend on
the accessibility of vertices or on vertices being on the outer face, we can greatly
limit the number of embeddings that we must consider. For example, if Gi is not
on the outer face (and hence not accessible from above or from below) in the
embeddings Γ1 and Γ2 of Gv and we later join Gv to a component that shares
a vertex with Gi, Γ1 can be used to create an upward planar embedding of the
new graph if and only if Γ2 can also be used. Thus we only need to consider
either Γ1 or Γ2.

We can show that, for the ith cutvertex, the number of embeddings that we
will produce will be less than 22

i

k2
i

k!8k, and producing them will take at most
O(23·2

i

k3·2
i

k!8kn) time. Since we have ` cutvertices, summing over all the steps

for joining biconnected components gives a time of at most O(23·2
`

k3·2
`

k!8kn).

Thus in total, the algorithm runs in O(k!8kn3 + 23·2
`

k3·2
`

k!8kn) time. ut

7 Conclusions and future work

In this paper, we first developed a parameterized algorithm for upward planarity
testing of biconnected graphs. This algorithm runs in O(k!8kn3) time, where k
is the number of triconnected components. We then showed conditions under
which contracting an edge in an upward planar graph results in a new graph
that is still upward planar, and we introduced a notion of vertex accessibility
from above and below. Using these results, we then gave necessary and sufficient
conditions for joining biconnected graphs to form a new upward planar graph.
This allowed us to obtain a parameterized algorithm for upward planarity testing

in general graphs. Our algorithm runs in O(k!8kn3+23·2
`

k3·2
`

k!8kn) time, where
n is the number of vertices, k is the number of triconnected components, and `
is the number of cutvertices.

Our running time analysis contains many potential overestimations. Better
analysis may yield a smaller running time. It would also be interesting to im-
plement the algorithm and see how well it performs in practice. In particular,
since the complexity analysis includes bookkeeping of embeddings that are not
upward planar, it is very likely that the running time in practice will be much
smaller than that given in Theorem 8.

Another possible research direction in applying parameterized complexity to
upward planarity testing is obtaining a parameterized algorithm that determines
whether or not a graph has a drawing in which at most 1

k
of the edges point

downward. For k = ∞, this is simply upward planarity testing. For k = 2, this
is trivial: take any drawing of the graph in which no edge is drawn horizontally.
Either this drawing, or the drawing that results from flipping it vertically, has
at least half the edges pointing upward. Thus it is possible that between these
two extremes, we may be able to obtain a parameterized result.
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Parameterized complexity is a fairly new area and seeks to find efficient
solutions to hard problems. Many problems in graph drawing have been shown to
be NP-complete, and so parameterized complexity may be able to offer solutions
to many of these problems. Some possible parameters worth examining are the
height, width, or area of the drawing, the maximum indegree or outdegree in a
graph, the number of faces in a planar graph, or the number of sources or sinks.
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