A Parameterized Algorithm for Upward Planarity Testing of Biconnected Graphs *Master's thesis presentation*

Hubert Chan

University of Waterloo

Graph drawing

- goal: visualization of graph structures
- vertices represented by points, edges by curves
- want drawings to satisfy certain criteria

Straight line drawing

Straight line drawing

 \bullet

Planarity

۲

Planarity

Planarity

Upward planarity

Upward planarity

Our goal

- Find an efficient solution to upward planarity testing.
- Testing for planarity is linear time (Hopcroft and Tarjan 1974)
- Testing for upward (crossings allowed) is linear time (e.g. Cormen et al. 2001, Brassard and Bratley 1996)

Our goal

- Find an efficient solution to upward planarity testing.
- Testing for planarity is linear time (Hopcroft and Tarjan 1974)
- Testing for upward (crossings allowed) is linear time (e.g. Cormen et al. 2001, Brassard and Bratley 1996)
- Unfortunately, upward planarity testing is NP-complete (Garg and Tamassia 2001).

Related work

Class	Complexity	Reference
st-graph	O(n)	Di Battista and Tamassia 1988
bipartite	O(n)	Di Battista, Liu, and Rival 1990
triconnected	$O(n+r^2)$	Bertolazzi et al. 1994
outerplanar	$O(n^2)$	Papakostas 1995
single source	O(n)	Bertolazzi et al. 1998

۲

 \bullet

- developed by Downey and Fellows
- limit combinatorial explosion to some aspect of the problem

- developed by Downey and Fellows
- limit combinatorial explosion to some aspect of the problem
- e.g. VERTEX COVER

- developed by Downey and Fellows
- limit combinatorial explosion to some aspect of the problem
- e.g. VERTEX COVER
 - NP-complete

- developed by Downey and Fellows
- limit combinatorial explosion to some aspect of the problem
- e.g. VERTEX COVER
 - NP-complete

• to find a vertex cover of size k: $O\left(kn + \frac{4}{3}^k k^2\right)$ (Balasubramanian et al. 1998)

Related work in parameterized complexity

- Zhou 2001 treewidth/pathwidth and graph drawing
- Dujmović et al. 2001 layered drawings

Develop a parameterized algorithm for upward planarity testing.

our parameter: the number of triconnected components.

Definition. A graph is *k*-connected if there are at least *k* vertex-disjoint paths between any two vertices.

Definition. A graph is *k*-connected if there are at least *k* vertex-disjoint paths between any two vertices.

Definition. A graph is k-connected if there are at least k vertex-disjoint paths between any two vertices.

2-connected = biconnected

3-connected = triconnected

k-connected components

Definition. A *k*-connected component is a maximal *k*-connected subgraph

Preliminary definitions — Embeddings

- Two different planar drawings may have similar structure
- An *embedding* is a description of this structure

Definition. The *(planar) embedding* associated with a drawing is the collection of clockwise orderings of the edges around each vertex.

Embeddings

Equivalence of drawings

Definition. Two drawings are *equivalent* if they have the same embedding, and are *strongly equivalent* if the have the same embedding and the same outer face.

Outline

- Transformations of drawings
- Edge contraction
- Joining subgraphs
- Parameterized algorithm for biconnected graphs
- Conclusion

Transformations of drawings

- If a graph is upward planar, we can draw it so that a specified edge is drawn vertically
- We can scale and translate drawings, preserving upward planarity

 \bullet

Question: after contracting an edge ϵ , is the resulting embedding still upward planar?

look at the edge ordering neighbours

consider all possibilities for the orientations of the neighbours

Is the contracted graph upward planar?

Use characterization by Hutton and Lubiw: **Theorem.** Given ϕ , a planar drawing of a directed acyclic graph G, there is an upward planar drawing strongly equivalent to ϕ if and only if every vertex v is a sink on the outer face of ϕ_v .

In the contracted graph:

- v is a sink (\leftarrow only show this)
- G/ϵ is acyclic
- *v* is on the outer face

In the contracted graph:

- v is a sink (\leftarrow only show this)
- G/ϵ is acyclic
- *v* is on the outer face

In the contracted graph:

- v is a sink (\leftarrow only show this)
- G/ϵ is acyclic
- *v* is on the outer face

In the contracted graph:

- v is a sink (\leftarrow only show this)
- G/ϵ is acyclic
- *v* is on the outer face

v is a sink

• we can draw ϵ vertically

v is a sink

- we can draw ϵ vertically
- where can vertices be in relation to ϵ ?

Locations of vertices

predecessors of t must be in B or D
successors of s must be in A or C

v is a sink

- if not: there is an outgoing edge (v, v_1)
- *v* was a sink in the original graph
- v_1 must be a predecessor of t
- *v* must be a predecessor of *t*

Where can v be drawn?

- v is a predecessor of t must be in \mathcal{B} or \mathcal{D}
- v is a successor of s must be in \mathcal{A} or \mathcal{C}

Contracting edges allows us to join two upward planar subgraphs

• draw G_1 and G_2

Contracting edges allows us to join two upward planar subgraphs

- draw G_1 and G_2
- draw a curve connecting v_1 and v_2

Contracting edges allows us to join two upward planar subgraphs

- draw G_1 and G_2
- draw a curve connecting v_1 and v_2
- contract the edge (v_1, v_2)

Goal: characterize when we can join two upward planar graphs to produce a new upward planar graph

Visibility from above and below

v is visible from above (below) in an embedding Γ if there is a drawing corresponding to Γ in which a curve can be drawn from v to a point above (below) the drawing.

Visibility from above and below

Master's thesis presentation – May 6, 2003 – p. 31/48

Alternate definition of visibility

v is *visible from above* if a curve can be drawn from v to a point on the outer face above v

Master's thesis presentation – May 6, 2003 – p. 32/48

Transforming the drawing

- draw a horizontal ray ℓ from p
- count the number of times it crosses the boundary of the outer face

- modify the drawing so that there are no crossings
- we define a procedure that reduces the number of crossings
- apply the procedure until no more crossings

- modify the drawing so that there are no crossings
- we define a procedure that reduces the number of crossings
- apply the procedure until no more crossings

- modify the drawing so that there are no crossings
- we define a procedure that reduces the number of crossings
- apply the procedure until no more crossings

- modify the drawing so that there are no crossings
- we define a procedure that reduces the number of crossings
- apply the procedure until no more crossings

Visibility from above

- We have shown that our two definitions of visibility are equivalent
- Our first definition allows us to join two graphs by drawing the edge (v_1, v_2)
- Our second definition allows us to determine the visibility of a vertex by looking at its incident edges
 - e.g. if v has an outgoing edge on the outer face, it is visible from above

Three cases for joining subgraphs

- v_1 and v_2 are both sources (or both sinks)
- v_1 is a source (or sink)
- neither is a source nor sink (~ only show this)

Neither v_1 nor v_2 are sources nor sinks

If neither v_1 nor v_2 are cutvertices, G is upward planar if and only if v_1 or v_2 has an **outgoing** and an **incoming** edge on the outer face that are edge ordering neighbours

Joining subgraphs — conclusions

- We have characterizations for when we can join two upward planar graphs to obtain a larger upward planar graph.
- This allows us, in some cases, to join upward planar biconnected graphs.

Biconnected graphs

- a triconnected graph has a unique planar embedding (Diestel 2000)
- how many embeddings does a biconnected graph have?
- find a bound on the number of embeddings
- test each embedding for upward planarity (Bertolazzi et al. 1994)

Biconnected graphs — outline

We obtain our bound by first considering a restricted case, and building up on this case.

- two triconnected components that share a common vertex
- k triconnected components that share a common vertex
- k triconnected components

Two triconnected components

Given two triconnected components that share at least one common vertex, how many possible embeddings do we have for the combined graph?

Two triconnected components

Given two triconnected components that share at least one common vertex, how many possible embeddings do we have for the combined graph?

Two triconnected components

Given two triconnected components that share at least one common vertex, how many possible embeddings do we have for the combined graph?

k triconnected components

Given *k* triconnected components that share at least one common vertex, how many possible embeddings do we have for the combined graph?

- similar to two triconnected components
- we must take into account the order of the components around the common vertex.

 $(k-1)!8^{k-1}$ possibilities

k triconnected components

How many embeddings do we have for a biconnected graph with k triconnected components? $k!8^{k-1}$

Algorithm

- split G into k triconnected components $(O(n^2) \text{ time} \text{Hopcroft and Tarjan})$
- for each possible embedding of G, and each possible outer face ($k!8^{k-1}n$ iterations)
 - test if the embedding is upward planar $(O(n^2)$ time Bertolazzi et al.)

total time: $O(k!8^kn^3)$

Conclusions - edge contraction

The contracted graph is

• upward planar: ··?•.

not upward planar:

• upward planar if and only if $G_{\overline{\epsilon}}$ is upward planar:

Conclusions - joining subgraphs

Characterizations for

- v_1 and v_2 are both sources
- v_1 is a source
- neither is a source nor sink

Conclusions - biconnected graphs

- parameterized algorithm where the parameter k is the number of triconnected components.
- running time: $O(k!8^kn^3)$

Future work

- parameterized algorithm for general graphs
- explore other parameters, e.g. the number of sources and sinks
- upward planarity testing as a maximization problem
- more applications of parameterized complexity techniques to graph drawing problems