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Graph drawing

• goal: visualization of graph structures

• vertices represented by points, edges by curves

• want drawings to satisfy certain criteria
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Straight line drawing
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Planarity
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Upward planarity
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Upward planarity
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Our goal

• Find an efficient solution to upward planarity
testing.

• Testing for planarity is linear time (Hopcroft and
Tarjan 1974)

• Testing for upward (crossings allowed) is linear
time (e.g. Cormen et al. 2001, Brassard and Bratley
1996)

• Unfortunately, upward planarity testing is
NP-complete (Garg and Tamassia 2001).
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Related work

Class Complexity Reference

st-graph O(n) Di Battista and Tamassia 1988

bipartite O(n) Di Battista, Liu, and Rival 1990

triconnected O(n + r2) Bertolazzi et al. 1994

outerplanar O(n2) Papakostas 1995

single source O(n) Bertolazzi et al. 1998
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Parameterized complexity

• developed by Downey and Fellows

• limit combinatorial explosion to some aspect of the
problem

• e.g. VERTEX COVER

• NP-complete

• to find a vertex cover of size k: O
(

kn + 4

3

k
k2

)

(Balasubramanian et al. 1998)
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Related work in parameterized complexity

• Zhou 2001 — treewidth/pathwidth and graph
drawing

• Dujmović et al. 2001 — layered drawings
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Modified goal

Develop a parameterized algorithm for upward
planarity testing.

our parameter: the number of triconnected components.
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k-connectivity

Definition. A graph is k-connected if there are at least k
vertex-disjoint paths between any two vertices.

2-connected = biconnected
3-connected = triconnected
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k-connected components

Definition. A k-connected component is a maximal
k-connected subgraph
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Preliminary definitions — Embeddings

• Two different planar drawings may have similar
structure

• An embedding is a description of this structure

Definition. The (planar) embedding associated with a
drawing is the collection of clockwise orderings of the
edges around each vertex.

1

2

3

4

5
1

2

3

4

5
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Embeddings
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Equivalence of drawings

Definition. Two drawings are equivalent if they have
the same embedding, and are strongly equivalent if the
have the same embedding and the same outer face.
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Outline

• Transformations of drawings

• Edge contraction

• Joining subgraphs

• Parameterized algorithm for biconnected graphs

• Conclusion
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Transformations of drawings

• If a graph is upward planar, we can draw it so that
a specified edge is drawn vertically

• We can scale and translate drawings, preserving
upward planarity
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Edge contraction
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Edge contraction

Question: after contracting an edge ε, is the resulting
embedding still upward planar?
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Edge contraction

• look at the edge ordering neighbours

...

a b

dc

...

t

s

α β

γ δ

ε

• consider all possibilities for the orientations of the
neighbours
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Is the contracted graph upward planar?

• yes: ??

? ?

(Hutton and Lubiw 1996)

*

• no: (corollary of Tamassia and Tollis
1986)

• if and only if G←ε is upward planar: remaining
cases
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Edge contraction

Use characterization by Hutton and Lubiw:

Theorem. Given φ, a planar drawing of a directed
acyclic graph G, there is an upward planar drawing
strongly equivalent to φ if and only if every vertex v is a
sink on the outer face of φv.

v v
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Proof outline

In the contracted graph:

• v is a sink (← only show this)

• G/ε is acyclic

• v is on the outer face

only need to consider vertices that have s as a
predecessor but not t

s

t
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v is a sink

• we can draw ε vertically

• where can vertices be in relation to ε?

C B

D

A

...

c

a

b

d

t

...

s

β

α

γ

δ

ε
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Locations of vertices

• predecessors of t must be in B or D

• successors of s must be in A or C

C B

D

A

...

c

a

b

d

t

...

s

β

α

γ

δ

ε
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v is a sink

• if not: there is an outgoing edge (v, v1)

• v was a sink in the original graph

• v1 must be a predecessor of t

• v must be a predecessor of t
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Where can v be drawn?

• v is a predecessor of t — must be in B or D

• v is a successor of s — must be in A or C

C B

D

A

...

c

a

b

d

t

...
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β
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Joining subgraphs

Contracting edges allows us to join two upward planar
subgraphs

• draw G1 and G2

• draw a curve connecting v1 and v2

• contract the edge (v1, v2)

G2

G1

v1

v2
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Joining subgraphs

Goal: characterize when we can join two upward planar
graphs to produce a new upward planar graph
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Visibility from above and below

v is visible from above (below) in an embedding Γ if
there is a drawing corresponding to Γ in which a curve
can be drawn from v to a point above (below) the
drawing.

v
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Visibility from above and below

v
v

p p
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Alternate definition of visibility

v is visible from above if a curve can be drawn from v to
a point on the outer face above v

v
v

p

p
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Transforming the drawing

• draw a horizontal ray ` from p

• count the number of times it crosses the boundary
of the outer face
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Removing crossings

• modify the drawing so that there are no crossings

• we define a procedure that reduces the number of
crossings

• apply the procedure until no more crossings

Master’s thesis presentation – May 6, 2003 – p. 34/48



Removing crossings

• modify the drawing so that there are no crossings

• we define a procedure that reduces the number of
crossings

• apply the procedure until no more crossings

Master’s thesis presentation – May 6, 2003 – p. 34/48



Removing crossings

• modify the drawing so that there are no crossings

• we define a procedure that reduces the number of
crossings

• apply the procedure until no more crossings

Master’s thesis presentation – May 6, 2003 – p. 34/48



Removing crossings

• modify the drawing so that there are no crossings

• we define a procedure that reduces the number of
crossings

• apply the procedure until no more crossings

Master’s thesis presentation – May 6, 2003 – p. 34/48



Visibility from above

• We have shown that our two definitions of
visibility are equivalent

• Our first definition allows us to join two graphs by
drawing the edge (v1, v2)

• Our second definition allows us to determine the
visibility of a vertex by looking at its incident edges
• e.g. if v has an outgoing edge on the outer face,

it is visible from above
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Three cases for joining subgraphs

• v1 and v2 are both sources (or both sinks)

• v1 is a source (or sink)

• neither is a source nor sink (← only show this)
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Neither v1 nor v2 are sources nor sinks

If neither v1 nor v2 are cutvertices, G is upward planar if
and only if v1 or v2 has an outgoing and an incoming
edge on the outer face that are edge ordering neighbours

G2
v1 G1

v2
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Joining subgraphs — conclusions

• We have characterizations for when we can join
two upward planar graphs to obtain a larger
upward planar graph.

• This allows us, in some cases, to join upward
planar biconnected graphs.
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Biconnected graphs

• a triconnected graph has a unique planar
embedding (Diestel 2000)

• how many embeddings does a biconnected graph
have?

• find a bound on the number of embeddings

• test each embedding for upward planarity
(Bertolazzi et al. 1994)
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Biconnected graphs — outline

We obtain our bound by first considering a restricted
case, and building up on this case.

• two triconnected components that share a common
vertex

• k triconnected components that share a common
vertex

• k triconnected components
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Two triconnected components

Given two triconnected components that share at least
one common vertex, how many possible embeddings do
we have for the combined graph?

G2

G1
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k triconnected components

Given k triconnected components that share at least one
common vertex, how many possible embeddings do we
have for the combined graph?

• similar to two triconnected components

• we must take into account the order of the
components around the common vertex.

1
2

3
4

1

4
2

3

(k − 1)!8k−1 possibilities
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k triconnected components

How many embeddings do we have for a biconnected
graph with k triconnected components?

k!8k−1
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Algorithm

• split G into k triconnected components

(O(n2) time — Hopcroft and Tarjan)

• for each possible embedding of G, and each

possible outer face (k!8k−1n iterations)
• test if the embedding is upward planar

(O(n2) time — Bertolazzi et al.)

total time: O(k!8kn3)
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Conclusions - edge contraction

The contracted graph is

• upward planar: ??

? ?

• not upward planar:

• upward planar if and only if G←ε is upward planar:
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Conclusions - joining subgraphs

Characterizations for

• v1 and v2 are both sources

• v1 is a source

• neither is a source nor sink
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Conclusions - biconnected graphs

• parameterized algorithm where the parameter k is
the number of triconnected components.

• running time: O(k!8kn3)
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Future work

• parameterized algorithm for general graphs

• explore other parameters, e.g. the number of
sources and sinks

• upward planarity testing as a maximization
problem

• more applications of parameterized complexity
techniques to graph drawing problems
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