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Abstract

We can visualize a graph by producing a geometric representation of the graph in
which each node is represented by a single point on the plane, and each edge is repre-
sented by a curve that connects its two endpoints.

Directed graphs are often used to model hierarchical structures; in order to visualize
the hierarchy represented by such a graph, it is desirable that a drawing of the graph
reflects this hierarchy. This can be achieved by drawing all the edges in the graph such
that they all point in an upwards direction. A graph that has a drawing in which all
edges point in an upwards direction and in which no edges cross is known as an upward
planar graph. Unfortunately, testing if a graph is upward planar is NP-complete.

Parameterized complexity is a technique used to find efficient algorithms for hard
problems, and in particular, NP-complete problems. The main idea is that the complex-
ity of an algorithm can be constrained, for the most part, to a parameter that describes
some aspect of the problem. If the parameter is fixed, the algorithm will run in polyno-
mial time.

In this thesis, we investigate contracting an edge in an upward planar graph that has
a specified embedding, and show that we can determine whether or not the resulting
embedding is upward planar given the orientation of the clockwise and counterclock-
wise neighbours of the given edge. Using this result, we then show that under certain
conditions, we can join two upward planar graphs at a vertex and obtain a new upward
planar graph. These two results expand on work done by Hutton and Lubiw [22].

Finally, we show that a biconnected graph has at most k!8*~! planar embeddings,
where £ is the number of triconnected components. By using an algorithm by Bertolazzi
et al. [4] that tests whether a given embedding is upward planar, we obtain a parame-
terized algorithm, where the parameter is the number of triconnected components, for
testing the upward planarity of a biconnected graph. This algorithm runs in O(k!8%n?)
time.
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Chapter 1

Introduction

The area of graph drawing deals with geometric representations of abstract graphs, and
has applications in many different areas such as software architecture, database design,
project management, electronic circuits, and genealogy. These geometrical representa-
tions, known as graph drawings, represent each vertex as a point on the plane, and each
edge as a curve connecting its two endpoints. A broader treatment of graph drawing can
be found in Di Battista et al. [9] or Kaufmann and Wagner [24].

In order for a drawing to be useful, there are different criteria that we may want
the drawing to satisfy. The set of criteria that are required for a specific drawing de-
pends on the application area. Unfortunately, for many sets of drawing criteria, the
problem of deciding whether a given graph has a drawing that satisfies these criteria
is NP-complete. In our discussion of algorithmic results for graphs, we will use the
number of vertices, n, as the input size, and we will use r to denote the total number
of both sources (vertices that have no incoming edges) and sinks (vertices that have no
outgoing edges).

One example of an NP-complete decision problem in graph drawing is the problem
of deciding if a graph has a drawing in which no edges cross and in which all edges
are drawn upward; this is the problem that we consider in this thesis. In order to try to
solve this problem efficiently, we will apply techniques from parameterized complexity,
an area in computational complexity developed by Downey and Fellows [15], which we
will describe later in this chapter.

A common criterion for a drawing is that each edge is drawn as a straight line.
A drawing that satisfies this criterion is called a straight line drawing. If each edge
is drawn as either a horizontal or a vertical line, the drawing is called rectilinear. A
polyline drawing is a drawing in which each edge is drawn as a polygonal line, that is,
a curve that is made up of line segments. The points at which these line segments are
connected are called bends. A polyline drawing in which vertices and bends are placed
only at grid points is called a grid drawing.

Another important consideration for a graph drawing is its size. The area of a graph
drawing is defined as the area of the smallest rectangle that encloses the drawing, and
the height and width of a drawing are the height and width, respectively, of this same
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Figure 1.1: Examples of straight line, polyline, rectilinear, and grid drawings

rectangle. It is often desirable to obtain a drawing that has the minimum possible area,
height, or width, while ensuring that vertices are not drawn too close to each other.

1.1 Upward planarity

A common criterion in graph drawing is that no edges cross, as crossing edges may
render a drawing incomprehensible. A drawing that satisfies this criterion is known as
planar, and a graph that has a planar drawing is a planar graph. One can determine
whether or not a graph G is planar in linear time, as shown by Hopcroft and Tarjan [21].

We now informally define several terms related to planar drawings; formal defini-
tions are given in Chapter 2. A planar drawing separates the plane into connected
regions called faces. The unbounded face is called the external face.

For each vertex of a graph, a planar drawing of the graph defines an ordering of
the edges around the vertex. The collection of these orderings is called an embedding;
this allows us to compare the structures of two drawings. We say that two drawings
are equivalent if they produce the same embedding, and we say that two drawings are
strongly equivalent if they are equivalent and have the same outer face.

Given a directed graph, it is often also desirable that all edges point in the same
direction, say upward, as this helps a viewer to visualize the precedence relationships
among vertices. A drawing in which all edges point upward is called an upward draw-
ing. An example of such a directed graph is a function call graph for a large software
system: if the graph is drawn with all edges pointing upward, functions that are placed
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Figure 1.2: An example of an upward planar graph

with a smaller y coordinate could be interpreted as those providing higher-level func-
tionality than those that are placed with a larger y coordinate.

The problem of determining whether or not a directed graph is upward, where we
allow edges to cross, can also be solved in linear time. This can be decided by finding
an ordering of the vertices such that for every directed edge (u,v), v comes before v
in the ordering. We can then draw each vertex such that vertices that appear later in
the ordering are drawn above those that appear earlier in the ordering. The problem of
finding a suitable ordering of the vertices is called topological sorting and can be found,
along with its solution, in a basic algorithms book [8, 7]. Both texts also show that one
can obtain such an ordering if and only if the given graph does not have a directed
cycle.

If a graph has a drawing that is both planar and upward, the graph is said to be
upward planar. For example, the graph in Figure 1.2 is upward planar. Some graphs,
such as the one in Figure 1.3, are not upward planar. Figure 1.3a shows a drawing
that is upward but not planar, and Figure 1.3b shows a drawing that is planar but not
upward. A given embedding is upward planar if there is a corresponding upward planar
drawing.

Although testing whether a graph is planar can be done in linear time, and testing
whether a graph is upward can be done in linear time, if we wish to determine whether
a graph is upward planar, the problem becomes NP-complete [19]. This problem is
known as upward planarity testing.

1.1.1 Related problems

In addition to upward planarity, there may be other desirable characteristics to have in
our drawings. One possible type of drawing is the layered drawing, also called a levelled
drawing, in which each vertex is drawn on a horizontal line, called a layer, and each
edge is represented as a straight line between two different layers. A proper layered
drawing is a layered drawing in which each edge has endpoints on consecutive layers
when we order the layers according to their y coordinate. Proper layered upward planar
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Figure 1.3: A graph that is not upward planar

drawings may be useful for visualizing software systems that have a layered architec-
ture; in a layered architecture, components are assigned to layers, and a component in
one layer may only communicate with components in the adjacent layers. Jiinger et al.
[23] investigate proper layered drawings and show that checking whether a graph has
a proper layered upward planar drawing can be done in linear time: the proper layered
and upward conditions force a layer assignment to the vertices, and Jiinger et al. give
a linear time algorithm that determines whether there exists a planar layered drawing
that has the same layer assignment as a given layer assignment.

Another approach is to relax our requirements for a drawing, instead of adding new
requirements. Bertolazzi et al. [3] relax slightly the upward planarity condition by in-
troducing the concept of quasi-upward planarity. A drawing is quasi-upward planar if
it is planar, and for each vertex v, there is a region containing v such that if we draw a
horizontal line through v, all outgoing edges are drawn above the line, and all incoming
edges are drawn below the line. An intuitive definition of a quasi-upward planar draw-
ing is a drawing that is planar, and in which every edge is drawn upward as it leaves or
enters a vertex. An example of a quasi-upward planar drawing is given in Figure 1.4. As
can be seen from the example, quasi-upward planar graphs may have directed cycles,
unlike upward planar graphs. The definition of quasi-upward planarity was motivated
by the fact that upward planarity is a fairly strict criterion for drawings, and can be
satisfied by few directed graphs, which limits its usefulness.

When creating a quasi-upward planar drawing, we also want to minimize the num-
ber of bends in the edges, where a bend for a quasi-upward planar drawing is defined
as a point on a curve where it is tangent to the horizontal line. Intuitively, a bend is a
point at which an edge changes its vertical direction. Bertolazzi et al. give a polynomial
time algorithm for finding a quasi-upward planar drawing with minimum number of
bends for a directed graph with a given embedding, and study the problem of finding a
quasi-upward planar drawing for a digraph that does not have a specified embedding.
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Figure 1.4: A quasi-upward planar drawing

Although we may know that a graph is upward planar, we may still be interested
in other aspects of an upward planar drawing, such as its area. We may also want the
drawing to display isomorphisms and symmetries in the graph, in order to help visual-
ize subgraphs that are similar. Di Battista et al. [13] investigate the area requirements
for upward drawings, and show that there exist graphs that require exponential area for
straight line drawings. For a special class of graphs, they are able to give an algorithm
that produces an upward planar drawing with small area. An st-graph is an acyclic
digraph that has exactly one source s, exactly one sink ¢, and the edge (s,t). Di Battista
et al. present a linear time algorithm that produces a planar polyline drawing for any
st-graph that has O(n?) area, displays the symmetries and isomorphisms in the graph,
and has a small number of bends in the drawing of the edges. Their algorithm works
by first producing a drawing, known as a dominance drawing, in which every edge is
drawn either as a vertical line pointing upward, a horizontal line pointing towards the
right, or a diagonal line pointing upward towards the right, and then rotating the draw-
ing by 45°. Their dominance drawing is produced by performing two topological sorts
based on edge orderings in a given embedding.

Bertolazzi et al. [4] investigate the problem of testing whether or not a given em-
bedding has a corresponding drawing that is upward planar. They introduce a new
problem of assigning sources and sinks to each face in a given embedding, and define
consistency properties for a set of assignments. They then show that an embedding is
upward planar if and only if it has a consistent assignment of sources and sinks to faces,
and give an O(n+r?) algorithm that determines whether or not an embedding is upward
planar by finding a consistent assignment, if one exists. This is used in the same paper
to give an algorithm for checking whether a triconnected graph is upward planar, and
is used by Papakostas [25] for checking whether an outerplanar graph is biconnected.

If we are given a drawing instead of an embedding, we can improve our time; Di
Battista and Liotta [10] give a linear time algorithm that checks whether a given drawing
is upward planar.



1.1.2 Algorithms on special classes of graphs

Since upward planarity testing is NP-complete, a common approach to solving the prob-
lem is to look at special classes of graphs. In this section, we survey the known algo-
rithms for upward planarity testing on special classes of graphs.

Di Battista and Tamassia [12] give a linear time algorithm that gives an upward pla-
nar drawing for an st-graph. Their algorithm operates by finding a planar embedding of
the graph, sorting the edges and vertices based on the embedding, and determining the
locations of the vertices and edges based on their sorted order. If a straight line drawing
is required, the time complexity is O(nlogn).

Di Battista et al. [11] show that a bipartite graph is upward planar if and only if it
is planar. Since planarity testing can be done in linear time, it follows that upward
planarity testing can also be done in linear time on bipartite graphs. Note as well that
since trees are always both bipartite and planar, trees are always upward planar.

Bertolazzi and Di Battista [2] give a O(n + r3logr) algorithm that determines if a tri-
connected graph, a graph in which there are at least three vertex-disjoint paths between
any pair of vertices, is upward planar. Bertolazzi et al. [4] improve this to O(n + 7?)
time. Since r is no greater than the number of vertices, one can write this as O(n?).
Both results are based on the following classic theorem.

Theorem 1.1. [32] A triconnected graph has a unique planar embedding, up to reversal
of all the edge orderings in the embedding.

An outerplanar graph is a graph that can be drawn such that all vertices are on the
outer face. Papakostas [25] gives polynomial time algorithms for outerplanar graphs:
one that tests whether a graph has an upward planar drawing that is also outerplanar
in O(n) time, and one that tests whether it has an upward planar drawing that may not
be outerplanar in O(n?) time. His algorithms operate by using tree search on the dual of
the graph, and are based on the fact that an outerplanar graph has a unique outerplanar
embedding.

Hutton and Lubiw [22] give a quadratic time algorithm that operates on single-source
graphs. To find an upward planar drawing, their algorithm first separates a graph into
biconnected components, and then the biconnected components are separated into tri-
connected components. They then take advantage of the fact that a triconnected com-
ponent has a unique planar embedding, and that the entire graph has only one source,
which means that every source s in a triconnected component is either the unique
source of the graph or is a shared vertex with other components. Thus each tricon-
nected component can only take on a limited number of “shapes,” and can be repre-
sented by a smaller marker graph that captures the “shape” of the component. The al-
gorithm then finds an upward planar drawing of each triconnected component together
with the marker graphs of the adjoining triconnected components, and then combines
the upward planar drawings of the triconnected components to form an upward planar
drawing of the entire graph.



Class Complexity | Reference
st-graph O(n) [12]
bipartite O(n) [11]
triconnected | O(n+1r?) | [4]
outerplanar | O(n?) [25]
single source | O(n) [5]

Table 1.1: Algorithms on special classes of graphs

Bertolazzi et al. [5] improve on Hutton and Lubiw’s result by giving a linear time
algorithm. Given a planar embedding, they create a new graph, called a face-vertex
graph, by creating a new vertex for each face, and connecting the original vertices to the
vertices that represent the incident faces. Based on a subgraph of this face-vertex graph,
they give a new characterization for upward planar graphs, and show that this yields
a linear-time algorithm for single-source graphs. Bertolazzi et al. also give a parallel
algorithm that takes O(logn) time using n loglogn/logn processors.

1.1.3 Combinatorial characterizations

Given a directed graph, we may be able to tell whether it is upward planar by testing
some other properties. The characterizations mentioned in this section may not trans-
late well to efficient algorithms, but they are useful for proving that given graphs are
upward planar.

Tamassia and Tollis [29] show that in any upward planar embedding, the outgoing
edges of any vertex v must appear consecutively around v, as must the incoming edges.
This is easily shown by taking an upward planar drawing that corresponds to the planar
embedding, and drawing a horizontal line through v. Since the drawing is upward
planar, all outgoing edges must appear above the line, and all incoming edges must
appear below the line.

Theorem 1.2. [29] All outgoing (incoming) arcs of any vertex v of an upward planar
embedding I appear consecutively around v.

Di Battista and Tamassia [12] show the equivalence among several types of upward
drawings.

Theorem 1.3. [12] Let G be a digraph. The following statements are equivalent
1. G is a subgraph of a planar st-graph;
2. G is upward planar;

3. G has an upward planar grid drawing; and
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Figure 1.5: Operations on upward planar graphs.

4. G has an upward planar straight line drawing.

Thomassen [30] characterizes graphs that have upward planar drawings in which all
faces are convex polygons, and presents the following characterization for single source
graphs:

Theorem 1.4. [30] Let ¢ be the planar drawing of an acyclic digraph G that has only one
source, s. Then there is an upward planar drawing strongly equivalent to ¢ if and only if
s is on the outer face and, for every cycle ¥ in o, ¥ has a vertex that does not have any
outgoing edges inside or on X.

Hutton and Lubiw [22] give another characterization for single source graphs, based
on Thomassen’s result:

Theorem 1.5. [22] Given a single source directed acyclic graph G, and a planar drawing
v of G with a specified outer face and source s on the outer face, G has an upward planar
drawing strongly equivalent to o if and only if the following condition holds: For each
vertex v € V, v is a sink on the outer face of the planar drawing ¢, induced on Pg(v),
where Pg(v), the predecessor set of v, is the set of vertices from which there is a directed
path to v.

They also consider four operations that can be performed on upward planar graphs,

and show that after performing these operations, the resulting graphs will be upward
planar if certain conditions hold. The operations are illustrated in Figure 1.5.
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The first operation contracts an edge in an upward planar graph. Contracting the
edge (u,v) means that we remove (u,v) and identify its endpoints so that the edges in-
cident to the new vertex are those that were incident to w or v. This is defined more
formally in Chapter 2. The idea behind the proof of this lemma is that we can con-
struct a new drawing of the graph obtained by contracting (u, v) from a drawing of G by
“pulling” v and all its incident vertices along a corridor around (u, v) until « and v meet.

Lemma 1.1. [22] (Figure 1.5a) Let G be a directed acyclic graph with the edge (u,v) where
v has no other incoming edges. Then the graph obtained by contracting (u,v) is upward
planar if G is upward planar.

The second operation joins together two upward planar graphs at a single vertex.

Lemma 1.2. [22] (Figure 1.5b) Let G be an upward planar digraph with a vertex u, and
let H be an upward planar digraph with single source u'. Let G’ be the digraph formed by
identifying v and v in G U H. Then G’ is upward planar.

The third operation replaces an edge with an upward planar graph.

Lemma 1.3. [22] (Figure 1.5¢) Let G be an upward planar digraph with an edge (u,v),
and H be an upward planar digraph with single source v’ and a sink v' both on the
outer face. Let G' be the digraph formed by removing the (u,v) edge of G and adding H,
identifying vertex u with v’ and vertex v with v'. Then G’ is upward planar.

The last operation splits a vertex into two vertices.

Lemma 1.4. [22] (Figure 1.5d) Let G be a directed acyclic graph that has an upward pla-
nar drawing where the edge ordering defined by the drawing about vertex v is eq, . . ., €x_1.
Let G’ be the directed acyclic graph formed by splitting v into two vertices: v' incident with
edges e;, ..., ej, and v" with edges €j1, ...,e;_1 (i # j mod k). Then G’ is upward planar.
If G had a single source, and i and j are such that each of v' and v" retain at least one
incoming edge, then the resulting G’ is also a single source digraph.

The proofs of these lemmas assume that the graphs involved are all single source
graphs. Hutton and Lubiw, therefore, show that given an upward planar graph G, we
can construct a single source upward planar graph G’ that has G as a subgraph, and
such that the conditions necessary to apply the lemmas still hold. The idea behind this
construction is that we “resolve” each source by adding an incoming edge that connects
it to a vertex below it.

Lemma 1.5. [22] Let G be a connected upward planar digraph. Then G is a subgraph of
some single-source upward planar H such that all non-source v € V(G) have the same
indegree in G as in H.



1.2 Parameterized complexity

One technique for dealing with NP-complete problems is called parameterized com-
plexity. Parameterized complexity is a relatively new technique, introduced by Downey
and Fellows [15], motivated by the desire to find efficient algorithms for hard problems.
Since many graph drawing problems are NP-complete, we may want to apply parame-
terized complexity techniques to solve these problems.

All known techniques to solve NP-complete problems suffer from a combinatorial
explosion, resulting in running times that are exponential in the size of the input. The
idea behind parameterized complexity is that we wish to constrain this combinatorial
explosion to a limited aspect of the problem that is described by a parameter & that is
polynomial in the input size. If we can then keep this parameter small, as is the case in
many practical situations, we may be able to solve the problem efficiently for instances
whose size is larger than what we would normally be able to solve using an algorithm
that runs in time exponential in the size of the problem.

Downey and Fellows define a parameterized problem as a subset L of ¥* x ¥*, where
the first item of the pair is an instance of the problem and the second item is the pa-
rameter. L is the language of all “yes” instances of the problem. They then define
fixed-parameter tractability as follows:

Definition 1.1. A parameterized problem L C ¥* x¥* is fixed-parameter tractable if there
is an algorithm that correctly decides, for input (z,y) € ¥* x ¥*, whether (z,y) € L
in time f(k)n® where n is the size of the main part of the input z, i.e. |x| = n, £k is
the parameter which we can take to be the length of y, i.e. & = |y|, @ is a constant
(independent of k), and f is an arbitrary function.

The classical example for parameterized complexity is the VERTEX COVER problem,
which is NP-complete. However, if we wish to find a vertex cover of size k, where £ is a
fixed parameter, this can be done in O(kn + %kk:Q) time, as shown by Balasubramanian
et al. [1].

Two parameters that can be used in graph problems are treewidth and pathwidth.
Given a graph, the concepts of treewidth and pathwidth describe how similar the graph
is to a tree or a path. Zhou [33] investigates applying the concept of treewidth and
pathwidth to graph drawing. Since many graph drawing problems are easily solvable
on trees and paths, Zhou investigates adapting algorithms for trees and paths to draw
graphs of bounded treewidth or pathwidth, using the treewidth and pathwidth of the
graph as the parameter.

Dujmovic et al. [17, 16] investigate parameterized complexity in layered graph draw-
ings. In the first paper, Dujmovic et al. give a linear time algorithm that decides if a
graph has a drawing with h layers in which none of the edges cross. The fixed parame-
ter used in their algorithm is /, the number of layers, and the algorithm is based on the
fact that a graph that has an h-layered planar drawing has a pathwidth that is a function
of h. They then show that this algorithm can be modified to solve related problems,
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such as determining whether, for a fixed %, a given graph can be drawn with at most
k crossings (known as the k-crossing problem), or determining whether a graph can be
drawn such that deleting at most r edges, for fixed r, removes all crossings (known as
the r-planarization problem).

The second paper by Dujmovic et al. investigates the problem of drawing a graph on
two layers, and uses the technique of reduction to a problem kernel: given an instance /
of the problem with parameter k, we construct a new problem J whose size is no larger
than f(k) for some function f. We can then solve J and use its solution to solve I. Duj-
movic et al. use this technique to obtain a linear time algorithm for the 2-planarization
problem on two-layer graphs, as well as for the 1-layer planarization problem, in which
the permutation of the vertices on one layer is fixed.

1.3 Thesis outline

The organization of this thesis is as follows. In Chapter 2, we define the terminology
that we will be using in the remainder of the thesis. In Chapter 3 we prove technical
lemmas and introduce notation that we will use in our proofs of our main results.

We then extend the results of Hutton and Lubiw given in Lemmas 1.1 and 1.2. In
Chapter 4, we investigate the conditions under which contracting an edge ¢ in an up-
ward planar graph with a given upward planar embedding results in an embedding that
is also upward planar. Our characterization is based on the orientations of the clock-
wise and counterclockwise neighbours of ¢ in the given embedding. Using our edge
contraction results, we then investigate in Chapter 5 the conditions under which join-
ing together two upward planar graphs G; and G, form a graph that is upward planar.

In Chapter 6, we bound the number of possible embeddings of a biconnected graph
by a function of the number of triconnected components, and give a parameterized al-
gorithm that decides if a biconnected graph is upward planar in O(k!8*~1n?) time, where
the parameter £ is the number of triconnected components. This result is an example
of using parameterized complexity techniques to solve a graph drawing problem.

Finally, in Chapter 7, we give our conclusions and identify areas for further research.
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Chapter 2

Definitions

In this chapter, we formally define the terminology that we use to describe graphs,
drawings, and embeddings. In order to describe a drawing formally, we will also need
to define some terms from topology.

2.1 Graphs

We assume the reader is familiar with the definitions of graphs and directed graphs.
These can be found in a basic graph theory book such as Diestel [14] or Bondy and
Murty [6]. Unless otherwise specified, the definitions from this section are taken from
these books.

In this thesis, we are concerned primarily with upward planar drawings, which
are drawings of directed graphs. Thus we assume, unless otherwise specified, that all
graphs are simple (i.e. multiple edges and loops are not allowed) and are directed.

Given a graph G, we will denote its set of vertices V(G) and its set of edges E(G).
Where there is no ambiguity as to the graph to which we refer, we may use simply V and
E. When discussing the complexity of algorithms, we will use the number of vertices n
of G as the input size.

In Chapters 5 and 6, we will be combining two smaller graphs to create a larger
graph. We define the union G; U G5 of two graphs G; and G5 as the graph whose set of
vertices V(G1UG») is V(G1) UV (G5) and whose set of edges E(G1UG») is E(G1)UE(G,).

If we are given a graph, we may wish to describe how well connected it is, that
is, how many ways we can reach a given vertex from any other given vertex. The
connectivity of a graph affects the number of possible planar drawings that it can have.
An undirected graph is connected if there is a path from any vertex to any other vertex.
A connected component is a maximal connected subgraph.

An undirected graph is k-connected if there are at least k vertex-disjoint undirected
paths between any pair of vertices, and a k-connected component is a maximal k-connec-
ted subgraph. A graph that is 2-connected is also called biconnected, and a graph that
is 3-connected is also called triconnected.
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An equivalent definition of k-connectivity is that the removal of any set of k ver-
tices, along with their incident edges, does not disconnect the graph. A set of vertices
whose removal disconnects a graph is called a cutset, and a single vertex whose removal
disconnects a graph is called a cutvertex.

We define the connectivity of a directed graph as the connectivity of its underlying
undirected graph.

In Chapter 4, we give conditions under which contracting an edge in an upward pla-
nar graph results in a graph that is still upward planar. Given a directed or undirected
graph G, we contract an edge ¢ = (v, w), which can be a directed or undirected edge, by
removing v, w, and the edges incident to either v or w. We then add a new vertex v,,
and for each edge (u,v) or (u,w) in G, we add the edge (u,v.). If G contains both the
edges (u,v) and (u,w), we only add (u,v.) once. We say that (u,v) or (u,w) is the edge
corresponding to (u,v.). If G is a directed graph, we also add the edge (v, u) for each
edge (v,u) or (w,u) in G. The resulting graph is denoted G /¢ [14].

Given a directed graph, we may wish to describe the relationships among vertices,
and between vertices and the edges incident to them. Given a directed edge ¢ = (v, w),
v is the tail of ¢, w is the head, and we say that w dominates v [30]. The edge ¢ is an
outgoing edge of v, and an incoming edge of w. If there is a directed path from v to w,
we say that v is a predecessor of w, and that w is a successor of v.

The number of outgoing and incoming edges incident to a given vertex can affect
properties of a graph. A vertex has outdegree k if it has exactly k& outgoing edges, and
indegree /¢ if it has exactly ¢ incoming edges [6]. The outdegree and indegree of v are
denoted deg ™ (v) and deg ™ (v), respectively. A vertex that has no incoming edges is called
a source, while a vertex that has no outgoing edges is called a sink [30]. In other words,
v is a source if deg™ (v) = 0, and a sink if deg™ (v) = 0.

2.2 Topology

We now define various topology terms that will be used to describe graph drawings and
related concepts. We assume that the reader is familiar with the definitions of functions
and of continuity.

Since our graphs are drawn on the plane, many functions that we will use have
values in R?. For the function f : S — R? where S can be any arbitrary set, we will
denote the  component of f(s) by f.(s), and the y component by f,(s).

A drawing, which we will define formally below, represents each edge by a curve. A
Jordan curve J is a continuous function from the interval [0, 1] to R?. The endpoints of
J are J(0) and J(1) [26]. A Jordan curve is simple if it does not intersect itself. In other
words, J is simple if J(p) = J(¢) implies p = ¢. We may sometimes find it convenient
to work with a set of points instead of a function. Given a curve J, we define the set
J ={p|J(z) = p for some x € [0, 1]}.

Since we desire drawings in which edges do not cross, we must define what it means
for two curves to cross. We say that the curves J; and J; cross if JiNJyis nonempty. We
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say that the curve .J crosses the point pif p € J. We use the term intersects as a synonym
for “crosses”.

In the drawings that we will be considering, the direction of each edges is important,
thus we introduce terms to describe the direction of a curve. A curve is monotone if
every horizontal line intersects it at most once. A curve J is monotone increasing if for
every pair a,b € [0, 1], a > b implies J,(a) > J,(b). We may also say that J is upward, or
that it points upward. If, instead, a > b implies J,(a) < J,(b), we say that the curve is
monotone decreasing, is downward, or points downward.

In our proofs, we will want to describe different properties of subsets of the plane.
An open ball centred at the point p and with radius » > 0 is the set {¢| dist(p,q) < r},
where dist is the Euclidean distance function. A set S is open if for every point p in S,
there is an open ball centred at p that is a subset of S [27]. The boundary of a set S is the
set of points p such that every open ball centred at p contains points from S as well as
points that are not in S. Given a set S, if we remove its boundary from S, the resulting
set is an open set. A set S is connected if, for every pair of points p and ¢, one can draw
a curve .J between p and ¢ such that J is a subset of S [27]. We may refer to a connected
subset of R? as a region.

2.3 Graph drawing

Given a graph, we wish to produce a geometric representation of the graph. This repre-
sentation is called a drawing.

A drawing ¢ of a directed or undirected graph G is a function that maps each vertex
v of G to a distinct point ¢(v) on the plane, and each edge (v, w) to a simple Jordan
curve J = ¢((v,w)) with endpoints ¢(v) and ¢(w) [9]. If G is a directed graph, we use
the convention that ¢(v) = J(0) and p(w) = J(1).

We will sometimes refer to the drawing of an edge or a vertex by the edge or the
vertex itself. For example, when we say that the edges ¢; and ¢, cross, we mean that
their associated curves ¢(¢;) and ¢(e2) cross.

Given a drawing ¢ of a directed or undirected graph GG, we may want to consider only
a smaller part of the drawing. If H is a subgraph of GG, we define ¢y as the drawing ¢
induced on H. That is, oy (v) = ¢(v) forallv € V(H), and pgu(e) = ¢(¢) forall e € V(H).

An undirected graph G is planar if there is a drawing of G that does not have crossing
edges. Such a drawing is called a planar drawing [9].

A directed graph is called upward planar if it has a planar drawing in which all
edges are drawn as curves that are monotone increasing. Such a drawing is called
upward planar [9].

A planar drawing partitions the plane into regions called faces [9]. The boundary
of each face is made up of edges and vertices; this definition for the boundary of a face
gives the same set of points as the definition of the boundary of a region. Since the plane
R? is infinite, one of the faces must have infinite size; this face is called the external face
[9] or outer face [14]. We say that a vertex or edge is on a face if it is part of the boundary
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Figure 2.1: The face defined by the vertex v and the ray r

for that face. We say that a point p is inside, or within, a face F' if p is an glement of the
region F'. Similarly, we say that a curve J is inside, or within, a face F'is J is a subset of
F.

Remark 2.1. Given an upward planar drawing of a graph G and a vertex v of G, if we
draw a ray r in any direction starting from v, then the part of r closest to v is either
contained within a face or is co-linear with an edge. Hence in every direction, other
than those that are co-linear with an edge, we can find a face that v is on. This is
illustrated in Figure 2.1. When r is a vertical ray going downward from v and is not
co-linear with an edge, we call the face that contains the initial portion of r the face
below v. If r is a vertical ray going upward from v, we call this face the face above v.

Since two different drawings may have similar structures, we want to be able to
describe the structure of a drawing in a combinatorial fashion, which will allow us to
compare the structures of different drawings. For a vertex v in a directed or undirected
graph, a planar drawing ¢ defines a clockwise circular order of the edges around v. The
collection I' of these orderings for each vertex is called a (planar) embedding [9], and
we say that ¢ corresponds to I'. The embedding associated with a drawing defines an
equivalence relation between drawings. Two drawings are equivalent [9] if they have
the same embedding. Two drawings are strongly equivalent [30] if, in addition to having
the same embedding, they also have the same outer face.

Given an embedding I" of a graph G and two edges ¢; and €, of G that have common
endpoint v, we introduce terminology to describe the relationship between ¢; and ¢, in
the clockwise edge ordering around v defined by I'. If ¢, comes immediately after ¢; in
the clockwise ordering, we say that ¢; and ¢, are edge-ordering neighbours, that €, is the
clockwise neighbour of €1, and that ¢, is the counterclockwise neighbour if €.

The embedding of a graph also defines an ordering of the edges that form its bound-
ary. To formally define this ordering, we must first define the dual of a planar graph.
Given a planar graph G with a specified drawing, we build the dual graph [9] G* as
follows: first, we create a vertex vp for each face F' of GG. For each edge ¢ of G, € is on
two faces F} and F,. We then create edge ¢* = {vg,,vg,} of G. The edge €* is called the
dual edge of e.

We can obtain a planar drawing of the dual graph G* from a planar drawing of G:
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Figure 2.2: Drawing a dual graph. The edges of the dual graph are drawn as dashed
lines, and the vertices are drawn as squares.

draw the vertex vp of G* in the face F' of G, and draw the edge ¢* of G* such that
it crosses the edge ¢ of G. Thus, for every face F' of GG, we have a vertex vy in G*,
which has an associated clockwise ordering of the edges around it. From this clockwise
ordering of edges incident to vr, we obtain a clockwise ordering of the edges that form
the boundary of F.

Remark 2.2. Note that if 7, and 7, are consecutive edges in the edge ordering around F
and have the common endpoint v, m will be the counterclockwise neighbour of 7, in
the edge ordering around v. As well, if 7, is the counterclockwise neighbour of 7; in
the edge ordering around v, m; and 7, will be consecutive edges in an ordering around
a face that is uniquely determined from the pair (7, m2) as follows. Let 7o = (v, v3), and
let m3 = (w3, v3) be the counterclockwise neighbour of 7, around v,; 73 will be our third
edge in the face. Next, let 7, = (v3,v4) be the counterclockwise neighbour of 73 around
v3; w4 will be our fourth edge in the face. We continue this process until we reach .
The resulting list of edges forms the boundary of a face F’, as shown in Figure 2.3.

Given a vertex and a face, we wish to be able to specify their relationship in a draw-
ing ¢. We say that a cycle ¥ surrounds a vertex v in a drawing ¢ if any ray drawn from
v, going in any direction, intersects the drawing of ¥. We say that a face F' surrounds v
if the cycle that makes up the boundary of F' surrounds v.

In this thesis, we adopt the convention of using lowercase Roman letters to represent
vertices, lowercase Greek letters to represent edges, and uppercase Roman letters to
represent larger collections of vertices or edges, such as graphs, cycles, or faces. We
will also use lowercase Roman letters to represent points on the plane, although we
will typically only use the letters p, ¢, and r for this.
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Figure 2.3: The face defined by two consecutive edges 7; and .
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Chapter 3

Technical lemmas

In this chapter, we introduce lemmas and definitions that we will use to prove our
main results. First, we will introduce the notion of transformations that take one graph
drawing and produce another drawing. This allows us to produce a drawing in which
we can ensure that extra criteria are satisfied. Then we show how to contract an edge
in a graph and create an embedding of the new graph based on an embedding of the
original graph. This is used in our edge contraction result. Finally, we discuss reversing
the orientation of edges in a directed graph. This is used in our edge contraction results
in which we show that the embedding that we obtain after contracting the edge ¢ is
upward planar if and only if the graph that we obtain by instead reversing the direction
of e is upward planar.

3.1 Transformations

In our proofs later on, it may be easier to reason about drawings if, in addition to being
upward planar, they satisfy other given criteria. For example, in Chapter 4, we want
to obtain a drawing in which a given edge is drawn vertically. One way to ensure that
these criteria are satisfied is to take a drawing and apply a transformation to it in order
to obtain a new drawing that satisfies the criteria. However, we will want to ensure that
after applying such a transformation, the drawing is still upward planar.

Definition 3.1. A function ¢ : R? — R? is called a transformation if, given any drawing
© of an arbitrary graph G, 1o is a drawing of G. In other words, ) o p maps each vertex
v to a distinct point ¢ o p(v), and each edge (v, w) to a simple Jordan curve ¢ o ¢((v,w))
with endpoints ¢ o p(v) and 9 o p(w). The graph G may be directed or undirected.

We now show that any function that is one-to-one and continuous is a transforma-
tion. Since many functions are known to be one-to-one and continuous, we can then
conclude that they are transformations, without having to prove this separately for each
function.
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Lemma 3.1. If ¢ is a continuous one-to-one function from R? to R?, then ) is a transfor-
mation.

Proof. Given a drawing ¢ of a graph G, we must show that ) o ¢ maps each vertex v to a
distinct point ¢ o p(v), and each edge (v, w) to a simple Jordan curve i o p((v, w)) with
endpoints ¢ o ¢(v) and ¥ o p(w).

To prove that ¢) o ¢ maps each vertex v to a distinct point, we show that if it maps v
and w to the same point, then v and w must be the same vertex. If 1) o p(v) = ¢ o p(w),
this means that p(v) = ¢(w), since v is a one-to-one function. But as ¢ is a drawing, it
maps each vertex to a distinct point. Therefore we conclude that v = w, which implies
that ¢ o ¢ maps each vertex to a distinct point.

Now, we show that ¢ o ¢ maps each edge (v,w) to a Jordan curve. Since ¢ is a
drawing, ¢((v,w)) = J is a Jordan curve. Now, since v is a continuous function from R?
to R?, and J is a continuous function from [0, 1] to R?, ¢yo J is also a continuous function
from [0, 1] to R?. Thus ¢ o ¢(v,w) is a Jordan curve.

We must show that ¢ o J = ¢ o p(v,w) is a simple curve. To show this, we show
that if ¢ o J maps real numbers a and b to the same point, ¢ and b must be the same
number. Suppose that ¢ o J(a) = 1 o J(b). Since 1 is one-to-one, we have J(a) = J(b).
But J is a simple curve, which means that we must have « = b. So we can conclude
that ¢ o J =9 o p((v,w)) is a simple curve.

Finally, we show that the endpoints of ¢ o ¢((v,w)) are ¢ o p(v) and ¥ o p(w). Since
¢ is a drawing, the endpoints of .J, J(0) and J(1), are ¢(v) and ¢(w). Without loss of
generality, we can assume that J(0) = ¢(v), and J(1) = ¢(w). Now, the endpoints of
the curve ¢ o J are ¢ o J(0) and ¢ o J(1). Since J(0) = ¢(v), and J(1) = p(w), we have
Yo J(0) =vop(v)and o J(1) =op(w), hence 1o p(v) and ¢ o p(w) are the endpoints
of ¥ o p((v,w)), as required. O

We can also show that any function that is a transformation must be one-to-one.
This fact is used in the proof of Lemma 3.3.

Lemma 3.2. If ¢ is a transformation, then ) must be a one-to-one function.

Proof. Suppose that ¢ is not one-to-one. Then there are points p and ¢ on the plane such
that p # ¢, but ¢¥(p) = ¢¥(¢). We now construct a graph G and a drawing ¢ of G such
that ¢ o ¢ is not a drawing of G. We define G to be the graph with two vertices v and
w and no edges, and set p(v) = p and ¢(w) = ¢q. The function ¢ maps each vertex to a
distinct point, and G has no edges hence ¢ trivially satisfies the conditions for drawing
edges. Therefore ¢ is a drawing of G. However, ¢ o p(v) = ¥(p) = ¥(q) = ¥ o p(w), and
hence 1 o ¢ does not map the vertices of G to distinct points, which means that ¢ is not
a transformation. O

Since we deal with upward planar drawings, we want to ensure that after we apply
a transformation to a drawing, the resulting drawing is upward planar.
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Definition 3.2. We say that a transformation v : R? — R? maintains upward planarity if,
given an upward planar drawing ¢ of a graph G, ¢ o ¢ is also an upward planar drawing
of G.

Definition 3.3. We say that a function v : R? — R? is order preserving in y, if for any
two points, (x1,y1) and (z2, y2) in R?, y; > y» if and only if ¢, (z1, 1) > ¥, (22, y2), where
¢, (p) denotes the y component of ¢)(p).

Lemma 3.3. If ¢ is a transformation that is order preserving in y, then 1) maintains up-
ward planarity.

Proof. Consider an upward planar drawing ¢ of a graph G. In order to conclude that 1
maintains upward planarity, we must show that ¢ o ¢ is an upward planar drawing of

G.

First we show that ¢ o ¢ is a planar drawing. Since ¢ is a planar drawing, we know
that for edges ¢; and e, with ¢; # e, g@ N @ = (). Define J; = ¢(e1) and Jy = ¢(e2).
To show that v o ¢ is planar, we must show that m N m = (). Now, suppose that
m N zm # (). Let a be a point in m N zm Then there is a point b; € Jy such
that ¢(b;) = a, and a point b, € J, such that ¢)(b,) = a. By Lemma 3.2, ¢ is a one-to-one
function, so we must have b; = by. But this gives us a point which is in both J; and
in Jy, contradicting the planarity of ¢. Thus a cannot exist, and m N m ={. In
other words, ¢ o ¢ is a planar drawing.

Now we show that ¢ o ¢ is upward. Let (v, w) be a (directed) edge, and let J =
¢((v,w)). The curve J points upward if and only if for every a < b, J,(a) < J,(b). Now
consider ¢ o J. Given numbers « and b such that a < b, set ' = J(a) and b’ = J(b). Since
J points upward, we have a’ < ¥/. But ¢ is order preserving in y, so i) o J(a) = ¥(d’) <
¥(b) = ¢ o J(b). Since a < b implies that ¢ o J(a) < ¢ o J(b), we can conclude that
o J=1o0¢((v,w))also points upwards. O

Some basic transformations are flipping a drawing about the = or y axis, scaling a
drawing, and translating a drawing. We can define these here formally. We define the
functions from R? to R? flipx(z,y) = (z, —y) and flip_y(z,y) = (—=z,y); these functions
flip a drawing about the x and y axis respectively. The flip_y function can be used to
help us take advantage of left-right symmetry. The flip_x function produces a drawing
in which all edges that pointed upward in the original drawing now point downward,
and vice versa. This is used in our edge reversal results later in this chapter. The
function scale,, o,)(z,y) = (0,2,0,y), which takes two parameters o, and o,, scales a
drawing horizontally by a factor of ¢,, and vertically by a factor of ¢,. The function
translate(, - )(z,y) = (¢ + 72,y + 7,), which takes two parameters 7, and 7, translates a
drawing. The scale and translate functions will be used in Section 5 to shrink parts of a
drawing so that they fit within a given region. It is easy to see that all of these functions
are continuous one-to-one functions, and hence are transformations. As well, flipy,
scale, and translate are all order preserving in y, and hence maintain upward planarity.
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Figure 3.1: An example of skew applied to a drawing so that ¢ is vertical

In Chapter 4, we will want to produce a drawing of an upward planar graph in
which a specified edge is vertical. From Theorem 1.3, we know that we can obtain a
straight line upward planar drawing of the graph. We can then apply a transformation
that produces a drawing in which the given edge is vertical. We now describe this
transformation and show how to use it to produce our desired drawing.

We define a function, skew,,, which takes one parameter o, as skew,(z,y) = (z+0y, y).
Figure 3.1 shows an example of skew applied to a drawing. Each component of skew
is continuous, therefore the entire function is continuous. It is invertible, since the
inverse of skew, is skew_,, hence is one-to-one, and is order preserving in y, since
the y coordinate does not change. Therefore, by Lemma 3.3, skew, maintains upward
planarity.

Note also that skew, maps straight lines to straight lines. Therefore if we apply skew,,
to a straight line drawing, the resulting drawing will be a straight line drawing.

Lemma 3.4. The function skew, maps straight lines to straight lines.

Proof. Every straight line can be described by an equation of the form Ax + By + C =0,
for some constants A, B, and C. Now, set (z/,y') = skew,(x,y) = (z + oy,y). Looking
at each component separately, we have =’ = x + oy and v = y. Using ¢y = y, and by
rearranging, we obtain the equation z = 2’ — oy’. Then Az + By + C = 0 becomes
A(x’' — oy') + By + C = 0. Rearranging, we get Az’ + (—Ac + B)y' + C = 0, which is the
equation of a straight line. O

Remark 3.1. If we have a straight line drawing of a graph G, and we want to ensure that
a specified edge ¢ is drawn vertically, we let X be the slope of e. In other words, e is
represented by a line that can be described by the equation y = 22+ b for some constant
b. Rearranging this equation, we obtain x = ob + oy. If we apply skew_, to this line,
we get (2/,y’) = skew_,(x,y) = (x — oy,y) = (6b+ oy — oy,y) = (ob,y), which defines a
vertical line.

In this section, we have defined a transformation that can be applied to graph draw-
ings, and have given conditions under which a function is a transformation. We then
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Figure 3.2: Clockwise ordering of edges around v,

defined a number of transformations that will be used in later sections.

3.2 Edge contraction and planar embeddings

Contracting an edge in a graph is a common operation on graphs. In Chapter 4, we
will be considering a graph GG with a given embedding, and contracting an edge ¢ in the
graph, giving us a new graph G/e. Therefore, we to define an embedding for G/e that is,
in some sense, similar to our embedding for G. We define this as follows.

Definition 3.4. Given a planar embedding I" of a graph G, and the edge ¢ = (v, w) of G,
we create I'/e, an embedding of G/e. For a vertex u of G, if u is not an endpoint of ,
u has the same clockwise order of edges in I'/e as in I'. If u is an endpoint of ¢, u is
not in G/¢, so we do not need to define the clockwise ordering of its incident edges.
For the new vertex v., we construct its edge list in I'/e from the edge lists of v and w

in I'. Let (¢ = my,m,...,m,) be the clockwise order of the edges around v in I', and
let (¢ = po,p1,--.,pm) be the clockwise order of the edges around w in I'. In I'/¢, we
make (mq,...,m,, p1,- .-, pm) be the clockwise order of edges around v.. This process is

illustrated in Figure 3.2. If an embedding I can be obtained in this way from I, we say
that I is derived from I'. By definition, I' /¢ is derived from I'.

Lemma 3.5. If [ is a planar embedding of the graph G, and ¢ = (v, w) is an edge of G,
then T'/e is a planar embedding of G /.

Proof. Given a planar embedding I" of G, let ¢ be a planar drawing of G corresponding
to I'. As shown independently by Fary [18], Stein [28], and Wagner [31], every planar
graph has a straight line planar drawing. Therefore we can assume, without loss of
generality, that ¢ is a straight line drawing. Now consider ¢(¢). We wish to find a
region around ¢ in which no vertices other than v and w, and no edges other than those
incident to v and w, are drawn. For example, we can set ¢ to be half the value of the
minimum of the set of distances from ¢ to each vertex other than v and w, and from ¢ to
each edge other than those incident to v or w. The distance between a vertex u and the
edge ¢ is defined as the shortest distance between v and any point on ¢, and the distance
between an edge 7 and ¢ is defined as the shortest distance between a point from 7 and a
point from e. Then our requirement is satisfied by the region defined as the set of points
within a distance of § of e. We call this region R, and the complement of this region R.
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Figure 3.3: Drawing the edges incident to v,

We now create a drawing ¢’ of GG/e. For all vertices and edges that are in both G and
G/e, let ¢’ be the same as ¢, and let ¢’(v,.) be the midpoint of ¢ (e).

Now we must define ¢’(a’) for each edge o incident to v. in G/e. Let a be the edge
in G corresponding to o/, and let J = ¢(«). Without loss of generality, we can assume
that « is incident to v, and that J(1) is the endpoint of J corresponding to v. We split .J
into two parts: the part that is drawn in R and the part that is drawn in R. Let b be such
that J(b) is at a distance of exactly 6 away from e. In other words, J(b) is the boundary
between these two parts. We then define J' = ¢/(«’) by letting J'(¢) = J(c) for all ¢ < b.
Hence the part of the curve that is in R remains the same. For ¢ > b, we define .J(c) to
be the line from J(b) to ¢'(v.). This procedure is illustrated in Figure 3.3.

We can see that this procedure will produce a planar drawing. The portion of the
drawing that is more than § away from e remains the same, so if the original drawing
was planar, the new drawing is planar as well. The portion that is less than ¢ away from
e is composed of straight lines that all meet at ¢’(v.), therefore if any two lines intersect
at any other point, they must be colinear. But if they are colinear, this implies that they
intersect at a point that is § away from ¢, which cannot happen if the original drawing
was planar.

This procedure also produces a drawing that corresponds to I'/e. The drawing re-
mains the same around all vertices that are in both G and G/¢, so we need only to
consider the edges drawn around v.. The order of the edges drawn around v, is defined
by the order of the edges around the area that is § away from e. This order is defined
by the order of the edges around v and w, which gives us the order specified in I'/e.
Since this drawing is planar and corresponds to I'/¢, we have shown that I' /e is a planar
embedding. O

3.3 Edge reversal

In this section, we discuss the effect of reversing the orientations of edges, and define
some notation. First, we define notation to represent reversal of all the edges in a graph
and reversal of a single edge. Then we will show that a graph G is upward planar if and
only if the graph formed by reversing all the edges in G is upward planar. This result is
used in Chapter 4 to take advantage of vertical symmetry.

Definition 3.5. We denote by G the graph G in which the orientation of every edge is
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reversed. In other words, V(G) = V(G), and E(E‘) = {(w,v)|(v,w) € E(G)}.

Definition 3.6. We denote by G< the graph G in which the orientation of ¢ = (v, w) is
reversed. In other words, V(G<) = V(G), and E(G<) = E(G) U {(w,v)} — {€}

Lemma 3.6. The graph G is upward planar if and only 1]66Y is upward planar.

Proof. Since G = G, it suffices to show that if G is upward planar, so is G. Let G be
upward planar with upward planar drawing . Now, if we reverse the orientation of all
the edges in G, all the edges will be pointing downwards in ¢. Next, we apply the flip_x
transformation on ¢, which flips the drawing about the x axis and causes all the edges

to now be pointing upwards. Thus we have created an upward planar drawing for G,
and hence G is upward planar. O
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Chapter 4

Edge contraction and upward planarity

In this chapter, we investigate contracting an edge ¢ in an upward planar graph G that
has upward planar embedding I', and consider the conditions under which the embed-
ding I'/e of G /e derived from I', as defined in Definition 3.4, is still upward planar. This
will help us to “join together” two upward planar graphs in the next chapter by drawing
each graph separately, drawing an edge between the graphs, and contracting the edge.

Throughout this section, we let G be an upward planar graph with upward planar
embedding I, and € = (s, t) will be the edge that we wish to contract.

Note that if s has degree one, then contracting ¢ has the same effect as removing s
from the graph. A subgraph of an upward planar graph is also upward planar, so G/¢ is
upward planar. Similarly, if ¢ has degree one, G/¢ is upward planar. Therefore we can
assume from now on that both s and ¢ have degree greater than one.

Since s and ¢ have degree greater than one, we will consider the edge-ordering neigh-
bours of e. Throughout this section, we will use the following labels. Let a and 3 be the
clockwise and counterclockwise neighbours, respectively, of ¢ around ¢ in the embed-
ding I', and let v and ¢ be the counterclockwise and clockwise neighbours of ¢ around
s (Figure 4.1). Let a # t be an endpoint of «, b # ¢ be an endpoint of 3, ¢ # s be an
endpoint of v, and d # s be an endpoint of ¢.

As shorthand in this section, if a or 3 is oriented towards ¢, we say that it is oriented
inwards, and similarly for when ~ or ¢ is oriented towards s. If a or [ is oriented away
from s, we say that it is oriented outwards, and similarly for v and §.

Since ¢ is an arbitrary edge, we must consider all possibilities with respect to the
orientations of the edges «, 3, 7, and ¢. First, we will consider the case where o and /3
are both oriented outwards, and we will use symmetry for the case where v and ¢ are
both oriented inwards.

In the proof of Lemma 1.1 by Hutton and Lubiw, the embedding in the resulting
graph is derived from I, so we can strengthen the statement of the lemma.

Theorem 4.1. If deg™ (t) = 1, then G /¢ is upward planar with upward planar embedding
['/e.

This handles the case for when « and (3 are both oriented outwards: if « and (3 are
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Figure 4.1: The vertices around the edge ¢

oriented outwards, then by Theorem 1.2, all the edges between « and 3 in the clockwise
ordering around ¢ must be outgoing edges, and hence deg™ (t) = 1. Note that in this case,
the orientations of v and ¢ do not matter. Now, by symmetry, we also have the following
corollary, which handles the case for when v and § are both oriented inwards:

Corollary 4.1. If deg™ (s) = 1, then G/ is upward planar with upward planar embedding
['/e.

Proof. From Lemma 3.6, we know that if we reverse the directions of all the edges in G,

the resulting graph H = G is also upward planar. By reversing all of the edge directions,
all the incoming edges to s become outgoing edges, and vice versa, so we now have
deg™ (s) = 1. Therefore, by Theorem 4.1, contracting the edge ¢ results in a graph K =
H /e that is upward planar with planar embedding I'/e. If we reverse the direction of all

the edges again, the resulting graph K is upward planar.

The graph K was obtained by reversing the orientation of the edges in GG, contracting
¢, and reversing the edges in the resulting graph. We now show that contracting ¢ has
no effect on the edge directions, and that it does not matter if we contract ¢ before or
after we reverse the other edges. Certainly, it will have no effect on edges that are not
incident to s or ¢, thus we need only consider edges incident to s or t. If we have the
edge (v, s) for some vertex v, but no edge between v and ¢, then if we contract ¢, we get
the edge (v, v.). If we then reverse all the edges, this gives us the edge (v, v). If, instead,
we reverse all the edges before contracting ¢, we obtain the same edge (v, v).

Now if we have both the edges (v, s) and (v, ), then contracting e gives us the edge
(v,v.), and reversing this gives (v, v). However, if we reverse the edges (v, s) and (v, ),
this gives us the edges (s,v) and (¢,v), and contracting e will again produce the edge
(ve,v). We can handle the case where we have both the edges (s,v) and (¢, v) similarly.

Finally, we consider the case where we have the edges (s, v) and (v, t). If we contract
¢, this gives us the edges (v.,v) and (v,v.), and reversing both the edges gives us the
same set of edges. If we first reverse (s,v) and (v, t), this gives us the edges (v, s) and
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(t,v), and contracting e gives us (v,v.) and (v.,v). Hence in all cases, if we contract
¢ before we reverse the other edges of the graph, we obtain the same result as if we
reversed the edges of the graph before we contracted e.

Thus it does not matter if we contract ¢ before or after we reverse the other edges,
and so we can obtain the same graph by reversing the edges in G, reversing the edges
again, and contracting e. Reversing the edges twice yields the original graph, which

means that K = G /¢, and hence since K is upward planar, so is G/e. O

Next, we look at the case where « and ~ are oriented outwards, and 3 and ¢ are
oriented inwards.

In order to use some of the theorems proved in other papers, we wish to turn G
into a single-source graph. To do this, we show that if GG is not a single-source graph,
we can find a single-source graph H that has G as a subgraph, and that has the same
orientations of the edge-ordering neighbours of ¢. Thus to prove that G/e¢ is upward
planar, we can show that H/e is upward planar. Since G/e¢ is a subgraph of H/e, we can
then conclude that G/e is upward planar.

As it turns out, we can construct H in such a way that «, (3, and ¢ are still edge-
ordering neighbours of €. Since 7 is oriented outwards, we must ensure then that the
counterclockwise neighbour of € around s in H is oriented outward.

Lemma 4.1. If « and v are oriented outwards, and 3 and § are oriented inwards, there is
a single-source graph H that has G as a subgraph, and the following conditions hold:

~

.« the first edge incident to t clockwise from € in H,

2. (s the first edge incident to t counterclockwise from e in H,

3. the first edge incident to s counterclockwise from e is oriented outward, and
4. ¢ is the first edge incident to s clockwise from e.

Proof. The proof of this theorem is similar to the proof of Lemma 1.5 given by Hutton
and Lubiw [22]. The proofs differ in the edges that we add to each source of G, since
the conditions required for the graph H are different: the requirement in Lemma 1.5 is
that every non-source vertex v in G has the same indegree in G as in H.

The idea behind the proof is that we create a new source, which will be the single
source of H, and we “resolve” each source, other than our newly created source, by
adding an incoming edge (w,v) to each source v such that v is no longer a source; we
must select w appropriately so that our requirements hold. By “resolving” each source
other than our newly created source, only the newly created source is a source in H.

Since G is upward planar with embedding I, let ¢ be an upward planar drawing
of G that corresponds to the embedding I' and has width w and height A. Without
loss of generality, we can assume that the drawing is centred at (0,0), and that it is a
straight line drawing. Now, we add new vertices p, ¢, [, and r, which are drawn at the
coordinates (0, —2h), (0, 2h), (—2w, 0), and (2w, 0), respectively, and add the edges (lines)
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(p, 1), (p,7), (r,q), and (I, q). So far, we have only added a diamond around the drawing,
so the drawing is still upward planar. The vertex p will become the single source of H.
Now to “resolve” each source v other than p, we must add a new incoming edge
(w,v) so that v will no longer be a source; we now show how to select w. We want to
choose w so that when we draw the edge (w, v), it will be drawn “between” two outgoing
edges of w. This will ensure that if (w, v) is a new edge-ordering neighbour of ¢, it will
be the counterclockwise neighbour of ¢ around s and will be an outgoing edge, which
ensures that our required conditions hold. Thus the properties that we want for w are
that it shares a common face with v, and that its two incident edges on this face are both
outgoing edges. We call a vertex with these properties a target vertex.
In the drawing ¢, we draw starting from v a vertical ray j downwards parallel to the

y axis until it intersects a vertex or an edge. Since v is inside the diamond as specified
above, j will eventually intersect either (p,[) or (p, r) if it does not intersect any edge or
vertex from G. Let F be the face in which j is drawn. First, we consider the case where
j intersects a vertex wi, and define a process for finding a target vertex w. If w; is not
a target vertex, we let ¢; be an incoming edge of w; on the face F, and w, be the tail of
1. We then check if w, is a target vertex, and if not, we let ¢; be an incoming edge of w,
on the face F’, and w3 be the tail of 3. We continue this process of following incoming
edges until we find a target vertex. The following is a pseudocode description of our
process:

11

while (w; is not a target vertex)

¢; < an incoming edge of w; on the face F’
w1 < the tail of ¢;
return w;

We know that we will eventually reach a target vertex, otherwise we will eventually
arrive back at w; and we will have found that F' is a directed cycle, contradicting the
upward planarity of G. If j instead intersects an edge, we let w; be its tail, and we go
through the same process as if j intersected w;.

We can show the resulting graph is upward planar by demonstrating how to draw
the edge (w,,v) such that there are no edge crossings. We do this by drawing (w,, v)
“close to” the path F = (€4,...,€,_1). We want to find a number ¢ > 0 such that no other
edges or vertices from F' are drawn within a distance of ¢ from the path £. We can find
such a ¢ by, for example, taking ( to be half the minimum distance from any edge from
FE to any vertex or edge on F, other than those that are part of £. We then draw the
vertical line segment k&, from v to the point that is ¢ above ¢;. Then, for each edge ¢;,
i <n —1, we draw the line segment k; parallel to ¢; at a distance of ( away from ¢;. (We
may have to increase or decrease the length of k; so that one of its endpoints is the same
as an endpoint of k;_;, and the other is the same as an endpoint of %;,;.) Rather than
drawing the last segment k,_; parallel to ¢,_;, we instead draw it as a straight segment
from the endpoint of %, 5 to w,. Since each segment k;, i > 0 is drawn within a distance
of ¢ from E, by definition of (, k; will not cross any edge of G. As well, &, is a segment
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Figure 4.2: “Resolving” the source v

within the ray j and does not include the first point at which j crosses a vertex or an
edge, hence kq does not cross any edge of G. Therefore we have drawn (w,,, v) such that
there are no edge crossings. This process is illustrated in Figure 4.2.

From this procedure, we see that when we add the edge (w,,v), its edge-ordering
neighbours around w, are both outgoing edges. Neither s nor ¢ is a source, so if we
add any edges (w,,v) incident to s or ¢, s (or t) must be fulfilling the role of w,, and
hence the edge-ordering neighbours around s (or ¢) must both be outgoing edges. Of the
edges «, 3, v, 0, and ¢, the only pair of adjacent outgoing edges are v and e. Thus if we
add a new edge that is a neighbour of ¢, it must be between 7 and ¢ in the clockwise
ordering around s. This edge will be an outgoing edge; therefore our required conditions
hold. O

Theorem 4.2. If the edges o and ~ are oriented outwards, and 3 and ¢ are oriented
inwards, then G /e is upward planar with upward planar embedding T /e.

Proof. By Lemma 4.1, we can assume without loss of generality that G is a single-source
graph: since GG is upward planar, we can use Lemma 4.1 to find a single source graph H
that has G as a subgraph, and in which the edge-ordering neighbours of ¢ have the same
orientations as in G. After contracting the edge ¢, we obtain the upward planar graph
H /e that has GG/e as a subgraph. Since H/e is upward planar, so is G/e.

Since we can assume that G is a single-source graph, we can then use Theorem 1.5
to show that GG/¢ is upward planar as follows. Since ¢ is an upward planar drawing, we
know by Theorem 1.5 that for every vertex v € V(G), v is a sink on the outer face of ¢,,
the drawing induced on Pg;(v). To show that G/e is upward planar, we must produce a
planar drawing ¢’ corresponding to I'/e such that for every v € V(G/e¢), v is a sink on
the outer face of ¢/. We will let ¢’ be the drawing of G/¢ that we produce in the proof of
Lemma 3.5. This drawing may not be upward planar, but by Theorem 1.5, there is an
upward planar drawing strongly equivalent to ¢’ if G/e does not have a directed cycle
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and every vertex v is a sink on the outer face of /. We will first show that v is a sink in
¢!, that G//e does not have a directed cycle, and finally that v is on the outer face of ¢! .

Since I is an upward planar embedding of G, let ¢ be an upward planar drawing of
G that corresponds to I'. Without loss of generality, we can assume by Theorem 1.3 that
the drawing is a straight line drawing. We can also assume that ¢ is drawn vertically: if
not, we can apply the skew transformation appropriately, as described in Remark 3.1, to
produce a drawing in which e is drawn vertically.

For each vertex v of G, exactly one of the following is true:

1. v=so0rv=t,

2. v is a successor of ¢,

3. v is a successor of s and not a successor of ¢, or
4. v is not a successor of s.

When we contract ¢, one of four things can happen to Pg/(v) for a given v in V(G),
corresponding to the four situations listed above:

1. v is removed from the graph if v is s or ¢, and is replaced with v.. In this case,
v ¢ V(G/e), so we do not need to consider v;

2. s and ¢t are removed from P/ (v) and replaced with v.;
3. v. and the contents of P;(t) — {s,t} are added to Pg/.(v), and s is removed; or
4. Pg/e(v) is the same as Pg(v).

We then need to show that in each case, v is a sink on the outer face of ¢!. If (4)
occurs, v will still be a sink on the outer face of ¢! = ¢,. If (2) occurs, ¢/, will not have
any extra edges, so v will still be a sink, and ¢! will not have any new faces, so v will
still be on the outer face. Note that for the new vertex, v, Ps/(v.) is the same as Pg(t),
but with s and ¢ removed, and replaced with v, so this is handled by case (2). Now all
that remains to be shown is that if (3) occurs, v must also be a sink on the outer face of
Py-

First, suppose that v is not a sink. Since v was a sink in ¢, but is not in ¢/, and
since the vertices of ¢! are Ps(v) U Pg(t) U {v.} — {s,t}, it must have a successor from
Po(t)U{v.} — {s,t}. In other words, there is a vertex w € Pg(t) U{v.} — {s,t}, w & Pg(v),
such that (v, w) is an edge in G. Since w is a predecessor of ¢ and v is a predecessor of
w, v is also a predecessor of t.

Now we consider where the predecessors of ¢t and successors of s can lie on the plane.
We will then use this to show that the edge (v, w) cannot exist by showing that there is
no region in which w can be drawn. We define four regions on the plane, illustrated in
Figure 4.3. Note that some of these regions overlap.
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Figure 4.3: Regions in which vertices can lie

1. region A is the set of points that have larger y coordinate than the vertex ¢, in other
words, the region above t;

2. region B is the set of points that have larger = coordinate, and smaller y coordinate
than the vertex ¢, in other words, the region below and to the right of ¢;

3. region C is the set of points that have smaller = coordinate, and a larger y coordi-
nate than the vertex s, in other words, the region above and to the left of s; and

4. region D is the set of points that have smaller y coordinate than the vertex s, in
other words, the region below s.

We now show that all predecessors of ¢ other than s must be in regions B or D.
Since « is oriented outwards and ¢ is upward planar, « must be above ¢, in region .A.
Since (3 is oriented inwards, b must be below ¢, and b must also be to the right of € as a
consequence of a being the clockwise neighbour of € around ¢. Therefore b must be in
region 5. Similarly, all vertices dominated by ¢, except s, must be in region 5. Since ¢
is planar, no edges can cross (s, t), and so all predecessors of ¢, except s, must be to the
right of (s, ), or below s, in other words, in regions 5 or D.

We can use similar reasoning to show that all successors of s other that ¢ must be
in regions A or C. The vertex d must be in region D. All outgoing edges of s must be
drawn above s, and must be to the left of ¢ as a consequence of ¢ being the clockwise
neighbour of € around s. Therefore ¢ must be in the region C, as must all vertices other
than s that dominate ¢. Since no edges can cross (s,t), all successors of s other than ¢
must be in regions C or A.

Now since v is a predecessor of ¢, it must be in either B or D. At the same time,
v 1s a successor of s, and hence must be in either C or .A. However, B U D does not
overlap with C U A. Hence there is no place on the plane in which v can lie. Thus our
assumption that there is an edge (v, w) in ¢! is incorrect, so v must be a sink.

Using this same reasoning, we can show that GG/e has no directed cycles. We already
know that G is acyclic, since it is upward planar. Thus if G /¢ has a directed cycle, it
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must have been created by a directed path P from s to ¢ other than the path that consists
only of the edge e: after contracting ¢, the endpoints of this path will be identified,
giving us our cycle. If we let v ¢ {s,t} be a vertex on P, then v is a successor of s and a
predecessor of t. However, this means that v must be either in B or D, and at the same
time in either C or A, which we have seen is impossible. Therefore such a path is not
possible, and hence G/¢ is acyclic.

We will now show that v is not on the outer face of ¢ . If not, then let F' be the outer
face of /. Since v is not on the outer face, /' surrounds v. By using the same set of edges
as I, and possibly adding ¢ if F includes edges incident to v,, this corresponds to a cycle
3 in ¢ that surrounds v. Since all the vertices from ¢/, are from P/ (v) U Pg/e(t) U {v.},
¥ consists only of vertices of Pg(v) U Pg(t). We then consider the drawing of ¥ in ¢, and
we will show that ¥ cannot exist.

Since ¥ surrounds v in the drawing ¢, there is at least one edge (v, vs) of 3 that is
drawn such that there is a point p on the drawing of (v, v2) that is above and to the left
of v. Since the drawing is upward, v, must be above v, thus it cannot be a predecessor
of v. But vy, € Pg(v) U Pg(t), so v, must be a predecessor of t. Note that v, cannot be ¢:
all incoming edges to ¢t must be drawn in region B, whereas v is a successor of s, and so
must be in region A or C. Thus if (v, v5) is in B and v is in A or C, no point of the edge
(v1,v9) can be drawn above and to the left of v. As well, since v must be in the region A
or C, and p is above and to the left of v, p must also be in A or C. But v, is a predecessor
of ¢, and hence must be in B or D. Hence any curve drawn from p to v, must either be
downward, or cross ¢, contradicting the upward planarity of ¢. Therefore the cycle X
cannot exist, and hence v must be on the outer face.

Since in all cases we have shown that v is a sink on the outer face of (I'/¢),,, we know
from Theorem 1.5 that G/e is upward planar. O

Using left-right symmetry, we have the following corollary:

Corollary 4.2. If the edges o and ~y are oriented inwards and 3 and § are oriented out-
wards, then G /e is upward planar with upward planar embedding T'/e.

In the above cases, we showed that contracting ¢ always yields an upward planar
graph. We will now show two conditions under which our desired embedding I'/¢ is
not upward planar.

Theorem 4.3. If « and ¢ are oriented inwards and (3 and ~ are oriented outwards, I'/¢ is
not an upward planar embedding.

Proof. If we look at the order of edges around v, in I'/e, starting with «, and going
clockwise, we see that we have «, an incoming edge, followed by some number of edges
of unknown orientation, followed by 3, an outgoing edge, followed by ¢, an incoming
edge, followed by some number of edges of unknown orientation, followed by ~, an
outgoing edge. Thus the outgoing edges of v. do not appear consecutively around v,,
and hence by Theorem 1.2 I' /¢ is not an upward planar embedding. O
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Figure 4.4: Examples of embeddings in which ¢ can or cannot be contracted

Figure 4.5: o and [ are oriented inwards and ~ and ¢ are oriented outwards

And by symmetry, we have the following:

Corollary 4.3. If o and ¢ are oriented outwards and  and  are oriented inwards, I'/e is
not an upward planar embedding.

Note, however, that in some cases, G/¢ may be upward planar under a different
embedding. For example, consider the graph and the embedding illustrated in Figure
4.4a. In this case, the derived embedding is not an upward planar embedding. However,
if we change the embedding to that illustrated in 4.4b, the derived embedding is an
upward planar embedding.

In the remaining five cases for the orientations of «, 3, 7, and ¢ (see Table 4.1),
I'/e may or may not be an upward planar embedding. For example, for the graph and
embedding in 4.5a, the derived embedding is an upward planar embedding as shown in
4.5b. However, for the graph and embedding in 4.5c, the derived embedding is not an
upward planar embedding (although G/¢ is upward planar with a different embedding)
since the derived embedding would violate Theorem 1.2.

However, we can show that if we reverse the direction of the edge ¢, and the resulting
graph G+« is still upward planar with the same embedding, then I' /¢ is an upward planar
embedding. Two of the remaining cases will be shown as corollaries; the proofs for the
remaining three cases are similar, so we only prove the first case, and give the changes
needed to prove the last two cases.
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Theorem 4.4. If o, 3, and v are oriented inwards and ¢ is oriented outwards, G/¢ is
upward planar with embedding T /¢ if and only if G« is upward planar with embedding
I.

Proof. First, we show that if G/e is upward planar with embedding I'/¢, then G is
upward planar with embedding I'. Let G/e be upward planar with embedding I'/e. We
can obtain G and embedding I' by splitting the vertex v. into two vertices, s and ¢,
such that the edges incident to each of s and t are consecutive in the ordering of the
edges of v, in I', and by adding the edge (¢, s). In their proof of Lemma 1.4, Hutton and
Lubiw [22] show that this graph is upward planar given that I' /e is upward planar.
Now we show that if G is upward planar with embedding I', G/¢ is upward planar
with embedding I'/e. Let G+ be upward planar with embedding I'. Now, if we look at e
in G, we see that we now have the conditions required for applying Corollary 4.1, and
hence G /e = G/e is upward planar with embedding I'/e. O

Theorem 4.5. If « is oriented inwards and 3, v, and § are oriented outwards, G /e is
upward planar with embedding T' /e if and only if G< is upward planar with embedding
I.

Proof. The forward direction is proved as in the proof of Theorem 4.4.
Since v and ¢ are oriented outwards, we use Theorem 4.1 rather than Corollary 4.1
for the reverse direction. O

Theorem 4.6. If o and [ are oriented inwards and ~ and ¢ are oriented outwards, G/¢ is
upward planar with embedding T' /e if and only if G< is upward planar with embedding
I.

Proof. Again, the forward direction is proved as in the proof of Theorem 4.4.

Since « and [ are oriented inwards, the reverse direction can be proved as in The-
orem 4.4 as well. Alternately, we can also use Theorem 4.1 rather than Corollary 4.1
since v and § are oriented outwards. O

Again, we have the following corollaries by symmetry:

Corollary 4.4. If o, 5, and ¢ are oriented inwards, and ~ is oriented outwards, G/¢ is
upward planar with embedding I' /e if and only if G< is upward planar with embedding
I

Corollary 4.5. If «, v, and § are oriented outwards, and (3 is oriented inwards, G/e is
upward planar with embedding T' /e if and only if G< is upward planar with embedding
I.

Using Theorem 1.2, we can obtain a necessary condition for I'/e to be an upward
planar embedding in these last cases.

Corollary 4.6. If v and ¢ are oriented outwards, at least one of « or [ are oriented in-
wards, and I'/e is an upward planar embedding, then deg™ (s) = 0.
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Figure 4.6: G//¢ is not upward planar

Corollary 4.7. If a and ( are oriented inwards, at least one of v or § are oriented out-
wards, and T /e is an upward planar embedding, then deg™ (t) = 0.

Note, however, that these conditions are not sufficient. Figure 4.6 shows a graph in
which deg™(s) = 0 and deg™(¢) = 0, but I'/e is not upward planar, since G/¢ will have a
directed cycle.

The results from this chapter are summarized in Table 4.1.
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orientation of edges

Is I'/e up-
ward planar?

reference

Cann e
TR

T

yes

yes

no

)

)

—

€

Thm. 4.1/Corol. 4.1

Thm. 4.2/Corol. 4.2

Thm. 4.3/Corol. 4.3

Thm. 4.4/Corol. 4.4

Thm. 4.5/Corol. 4.5

Thm. 4.6

We represent the orientation of the edges graphically. -7-- means that

—

the orientation for this edge does not matter. ‘€ means that I'/e is

upward planar if and only if Gz is upward planar with embedding I

Table 4.1: The effect of the orientations of «, 3, v, and § on contracting e.
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Chapter 5
Joining subgraphs

One way to create an upward planar drawing of a graph G is to split G into several
smaller subgraphs, create an upward planar drawing of each subgraph, and combine
the drawings of the subgraphs to form a drawing of G. In this section, we will be
considering how to do this for the case where each pair of subgraphs shares at most
one common vertex. We will also only consider the case where we split G into two
subgraphs G; and G5; using induction we can handle the case where G is split into
more than two subgraphs.

An equivalent way of looking at this procedure is that we are given two upward
planar connected digraphs G; and G, that do not share any common vertices. We then
form the graph G by specifying a vertex v; of GG1, and a vertex v, of G, and identifying
them. The same graph can also be obtained by adding the edge (v, v2), and contracting
(v1,v9). Thus to prove that G is upward planar, we will in general show that we can
draw (& in a face of G5, or vice versa, add the edge (v1, v2), and contract (vq, v2). In order
to add (v, v2), we will be defining a notion of visibility of vertices “from above” and
“from below”.

In this section, we will assume that G; and G, are connected and are upward planar.
When we need to specify embeddings and outer faces for GG; and G5, we will use I'; and
I’y for the embeddings, respectively, and F} and F; for the outer faces.

First, we show that v; must be on the outer face of G; or v, must be on the outer face
in GG, in order for G to be upward planar.

Lemma 5.1. If G; does not have an upward planar embedding in which v, is on the outer
face, and G5 does not have an upward planar embedding in which v, is on the outer face,
G is not upward planar.

Proof. Suppose that G is upward planar. Then consider an upward planar drawing ¢
of G, and let ¢; be the drawing induced on G; and ¢, be the drawing induced on G,.
Suppose that v; and v, are not on the outer face of ¢; and ¢,. Then the drawings of the
outer faces I} and F; of G4 and G5 surround v; = vs.

If the drawings of F; and F, intersect, then either a vertex or edge in F} intersects
a vertex or edge in F5, contradicting the planarity of ¢, or F; and F, share a common
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vertex, contradicting the fact that we constructed G by identifying only one pair of
vertices. Therefore F; and F» do not intersect. Since they both surround v; = v,, one of
the cycles must be drawn within the other.

Without loss of generality, assume that F} is drawn within F;. Since G5 is connected,
there is a path P from v, to F,. However, this path will cross F;. As above, P either
crosses F at an edge, contradicting the planarity of ¢, or P and F; share a common
vertex, contradicting our method of constructing G.

Therefore, if G is upward planar with drawing ¢, then v; must be on the outer face
of ; or v, must be on the outer face of ;. O

We will now define a notion of visibility of vertices from different parts of the outer
face, namely the area above or below the drawing of G. This, along with the edge
contraction results from the previous chapter, will help us to be able to join together the
subgraphs GG; and G5, using the following procedure: given an upward planar drawing
of G and G5, we draw G in a face of GG;. The face in which we draw G5 depends on the
visibility of v; and v. We can then draw the edge (v, v5), and contract this edge using
our edge contraction results.

Definition 5.1. Given an upward planar graph G with a specified upward planar embed-
ding I" and outer face F', we say that the vertex v is visible from above (below) if there
is an upward planar drawing of G corresponding to the specified embedding and outer
face such that a monotone curve that does not cross any edges can be drawn from v to
a point above (below) the drawing of G.

If a monotone curve J can be drawn from v to a point p above the drawing of G,
we can draw a monotone curve from v to any other point ¢ above the drawing of G as
follows. If ¢ is above p, then we just need to draw a straight line from p to ¢. Otherwise,
we follow the curve J from v to p, and stop when we reach a point r that has the same y
coordinate as the highest point in the drawing of G. From r, we can then draw a straight
line to ¢, as illustrated in Figure 5.1. Since this line is drawn entirely above the drawing
of G, it will not intersect any part of the drawing. Therefore our definition of visibility
from above is not dependent on the point to which we draw the curve.

If we are given an upward planar drawing and a vertex v that is on the outer face, we
may not be able to draw a monotone curve from v to a point that is above the drawing,
even though v may be visible from above by using a different drawing that has the
same embedding. Figure 5.2 gives an example of this: Figure 5.2a shows a drawing
in which we cannot draw a monotone curve from v to p, and Figure 5.2b shows an
alternate drawing of the same graph in which we can draw a monotone curve from v
to p. Because of this, we want a condition that is equivalent to the condition in the
definition of visibility from above, but is less dependent on the specific drawing that
is chosen. From this characterization, we will be able to obtain some visibility results
based on the planar embedding.

We will show that v is visible from above if we can draw a monotone curve from v
to a point p that is above v and in the outer face. This differs from the condition given
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Figure 5.1: Drawing a curve from v to ¢ given a curve from v to p

a b

Figure 5.2: v is visible from above, although we cannot draw a monotone curve from v
to pin (a)
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in the definition since p must be above only v; it does not have to be above the entire
drawing of G.

Lemma 5.2. Given an upward planar graph G and an upward planar drawing ¢ of G, if
a monotone curve that does not cross any edges of G can be drawn from v to a point p
that is above (below) v such that p is inside the outer face and not part of the boundary
of the outer face, then v is visible from above (below) with respect to the upward planar
embedding of .

Proof. To prove this, we will draw a horizontal ray ¢ from p and count how many times
¢ crosses the boundary of the outer face. If ¢ does not cross the boundary of the outer
face, we will show how to draw a curve from p to a point above GG. Otherwise, we will
show, by induction on the number of crossings, that we can redraw G so that £ no longer
crosses the boundary.

If p is already above the entire drawing of G, then we are done, as we already have
the condition in our definition of visibility from above. Otherwise, we draw a horizontal
ray /¢ starting at p. If p is to the right of v, we draw ¢ to the right of p, and if p is to the left
of v, we draw ¢ to the left. If p has the same = coordinate as v, we can draw /¢ either to left
or to the right. Using left-right symmetry, we can assume without loss of generality that
¢ is drawn to the left of p. Note that since p is in the outer face, this ray will cross the
boundary of the outer face an even number of times. On the odd-numbered crossings, ¢
moves from the outer face to an interior face; on the even-numbered crossings, ¢ moves
from an interior face to the outer face.

We want to ensure that ¢ does not intersect the drawing of a vertex, so we want to
show that if ¢ does intersect a vertex, we can move p slightly up or slightly down until
¢ does not intersect any vertices. We can do this since p is inside the outer face but not
part of its boundary, and hence there is an open ball around p that is entirely within the
outer face. Hence we can move p anywhere within this ball and it will still be inside the
outer face, and so this will not affect the result. Since there is only a finite number of
vertices, but there are an infinite number of vertical coordinates to which we can move
p, we can move p so that ¢ no longer intersects any vertex. Therefore we can assume
without loss of generality that ¢ does not intersect any vertices.

We first consider the case where ¢ does not cross the boundary of the outer face. In
this case, we have two possibilities. If no part of the graph is drawn above ¢ and to the
left of p, then we can draw a ray from p going straight up, until we reach a point above
the drawing ¢, and we are now done as we have satisfied the condition in our definition
of visibility from above. Otherwise, we will construct a curve from p to a point above
the drawing ¢. To do this, we define the point ¢ as the point of the drawing that is
closest to ¢ and that is above ¢ and to the left of p, as illustrated in Figure 5.3. We then
let § be half the distance from ¢ to ¢, and select a point r that is 6 above ¢ and to the left
of the leftmost point of the drawing ¢. Now we can draw a line segment 7 from p to r,
and a ray p from r going straight up. Since no part of ¢ is drawn within a distance of ¢
above ¢, m does not intersect ¢, and since p is drawn to the left of ¢, it will not intersect
© either.
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Figure 5.3: The ray ¢ does not cross the boundary of the outer face of G

We will now prove by induction on the number of crossings that we can modify ¢
so that ¢ does not cross the boundary of the outer face. Our base case is when ¢ crosses
the outer face zero times, in which case we are done.

Now, suppose that ¢ crosses boundary of the outer face £ > 0 times. We label the
points at which ¢ crosses the boundary of the outer face ¢, ..., ¢, numbered from left
to right. As noted above, ¢ will cross the outer face an even number of times, so if it
crosses the outer face at least once, it crosses the outer face at least twice. As well, at
each point ¢o;, ¢ goes from the outer face to an interior face when going from right to
left, and at each point ¢;,1, £ goes from an interior face to the outer face. Thus the line
segment between ¢; and ¢;,; is contained within the outer face if i is even, and is not
within the outer face if i is odd.

If we draw a line segment between ¢; and ¢», this separates the drawing ¢ into two
pieces, where two points r; and 7, in ¢ are part of the same piece if there is a path in ¢
from r; to r, that does not cross the line segment (¢, ¢»). Of these two pieces, we label
with A the piece that does not contain v. This is illustrated in Figure 5.4.

The idea for the induction is that we wish to remove the crossing points ¢; and ¢, by
“shrinking” A so that it fits completely within a region above or below ¢. By “shrinking”,
we mean that we will apply the scale and translate transformations to A such that A is
drawn entirely within the given region. To determine into which side of ¢ we will
shrink A, we look at the part of A that is closest to the segment (q;, ¢2). If this part is
above /¢, then shrinking A into a region below ¢ will remove the crossing points ¢; and
¢2, and if this part is below ¢, then shrinking .4 into a region above ¢ will remove the
crossing points. Since both cases are symmetrical, we will just consider the case where
we shrink A into a region below /.

We will define a rectangle R below ¢; this is the region into which we will shrink
A. We label with B the part of the original drawing that is in R; to ensure that the
resulting graph is still upward planar, we will have to shrink B into a sub-rectangle of
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Figure 5.4: Splitting ¢ into two pieces by drawing the line segment (q¢1, ¢2).

R. The way in which we shrink A is illustrated in Figure 5.5. We will now describe our
construction in detail.
The conditions that we want for our rectangle R are as follows.

—_

. its top edge has the same y coordinate as ¢;

2. its left edge is to the left of the leftmost point in ¢;

3. its right edge is to the right of ¢s;

4. all four of its corners are inside the outer face;

5. its left and right edges do not cross the boundary of the outer face of the drawing;
6. the part of the drawing ¢ that is within R is a single connected piece; and

7. there are no vertices in R.

We can construct such a rectangle as follows; the process is illustrated in Figure 5.6. To
satisfy condition 1, our top edge will be on the ray ¢. Now consider the third point ¢3
from the left at which ¢ crosses the outer face, or the point p if such a point does not
exist. We draw a vertical line h, midway between this point and ¢,; our right edge will
be on this line, which will satisfy condition 3. We draw a vertical line »; anywhere to
the left of the leftmost point of the drawing of GG; our left edge will be on this line, and
so condition 2 will be satisfied.

Now in order to satisfy conditions 5 and 6, we must pick a suitable location for the
bottom edge. To do this, we define two distances: let d, be the distance from ¢ to the
highest point below ¢ at which h, crosses the boundary of the outer face, and let d, be
the distance from ¢ to the highest vertex of ¢ below ¢. If we draw the bottom edge of
R so that it is within d, of ¢, then the right edge of R will not cross the boundary of
the outer face, which together with condition 2 will satisfy condition 5. If we draw the
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Figure 5.5: Shrinking .4 into R. We have magnified the result for clarity. For simplicity,
we only show the case where ¢ crosses the boundary of the outer face twice.
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Figure 5.6: Constructing the rectangle R

bottom edge of R so that it is within d, of ¢, then R will only contain edges, and so
conditions 7 will be satisfied. Since the drawing is upward planar, all the edges are
monotone, and hence every edge that is drawn in R must enter R from the bottom edge
of R and leave from the top edge of R. But by construction, the only place that it can
leave R is between ¢; and ¢», and hence the part of the drawing that is within R is a
single connected piece, satisfying condition 6. Therefore we draw a line h,, which will
define our bottom edge, at a distance of ¢, = %min(dr, d,) below ¢. Thus the lines h,,
hy, hy, and the ray ¢ define the rectangle R. The only remaining condition to be shown
is condition 4. The two left corners are within the outer face due to condition 2. The
top-right corner of R is drawn between ¢, and ¢3, and hence it is also in the outer face.
The right edge of R does not cross the outer face, so since the top-right corner of R is
inn the outer face, the entire right edge is within the outer face. Thus condition 4 is
satisfied.

By construction, no vertices are drawn within R; in particular, v is not within R.
As well, no part of A is in R since the portion within R is a single connected piece.
Thus we now have partitioned the drawing into three parts: A, as defined earlier; B, the
portion of the drawing within R; and C, the remainder of the drawing, which contains
v.

We will now split R into different regions; we will shrink different parts of .A and
B into these regions. Let , be the height of R, as defined previously, and let §, be the
distance between the right edge of the box and the rightmost part of the drawing within
the box. Since the right edge of the box does not cross the outer face, this distance is
positive. We divide the box into 6 regions, as illustrated in Figure 5.7. First, we cut
the box into thirds horizontally. We call the top third ¢/. The middle third is cut into
two parts, cutting at 2 from the right edge. We call the left part V and the right part
W. Finally, we cut the bottom third into three parts, at Z= and % from the right edge.
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Figure 5.7: Regions of the rectangle R

We call these parts, from left to right, X', ), and Z. Note that, by construction and by
definition of ¢,, no part of the drawing of G is in W, Y, or Z.

We will now split A into up to four parts; each of these parts will be shrunk into one
of the regions defined above. We draw a vertical line that is & to the left of the box’s
right edge, and we draw a horizontal line at the same vertical coordinate as ¢. These
two lines split the plane into four quadrants, and thus split .4 into up to four parts. We
call the part of A that is in the upper-left quadrant .A4;. The part of A that is in the
upper-right quadrant, if such a part exists, we call A,; the part that is in the lower-right
we call A3, and the part that is in the lower-left we call A,.

Now we will show how to shrink A and B. We will first shrink B into the region X.
The part A; will be shrunk into V, A, will be shrunk into W, A3 will be shrunk into Z,
and A, will be shrunk into ). In our resulting drawing, we will have &/ empty, which
serves to separate the drawing from /.

We can shrink each part of the drawing with appropriate uses of the scale and
translate transformations. Since scale and translate are both transformations that main-
tain upward planarity, our mapping of each part of the drawing will be upward planar;
to ensure that the entire drawing is upward planar, we only need to take care that adja-
cent parts will “line up”. By “lining up”, we mean that, for example, if we take a point p
that is on the boundary between A; and A,, after shrinking .A into R, p will be mapped
to the same point when it is transformed as a part of .A; as when it is transformed as
a part of A,. To determine the proper scaling factors, we draw a rectangle S around
A; the size of S does not matter. We split S into four quadrants using the same lines
that we used to split A into four parts, and we number the quadrants similarly: S; is
the upper-left quadrant, S, is the upper-right quadrant, and so on. Let /; and w; be the
height and width, respectively, of S;.

We now specify the scaling factors for B and each part of .A. We must shrink 5 into
X, which is one third the height of R, therefore the vertical scaling factor for B will be
one third. By definition of §,, no point in B is closer that ¢, from the right edge of R,
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so we do not have to scale 5 horizontally. In order for the bottom edge of .A; to line up
with the top edge of B, we do not want to scale .4, horizontally. This can be done since
the left edge of V is to the left of any point in the drawing of GG, and by construction the
right edge of V has the same x coordinate as the right edge of A;. Given h, the height of

S, as defined above, the vertical scaling factor for A; is ;Tyl Finally, we set the vertical

and horizontal scaling factors for .4; to be ;Ty and 3‘57“ respectively, for i = 2, 3, 4.

Note that h; = hy, which means that the vertical scaling factor for .4, and A, are the
same, and hence the right edge of .A; will line up with the left edge of A, after they are
shrunk into their respective boxes. Similarly, the horizontal scaling factors for .4, and
As are the same, and the vertical scaling factors for .45 and .4, are the same, and so these
parts will line up properly after they are transformed. We do not have to worry about
lining up A, with 4,, since no part of A crosses directly from one of these quadrants to
the other: the rectangle R separates these parts in the original drawing.

We have now removed the crossing points ¢; and ¢, and hence have reduced the
number of times that ¢ crosses the boundary of the outer face. Thus by induction, we
have an upward planar drawing in which ¢ does not cross the outer face. We can then
use the construction shown earlier to draw a curve from p to a point above the drawing
of G. Therefore v is visible from above, as required. O

Using this characterization, we can show that we can determine if a vertex is visible
from above or from below based on its edges, and that every vertex on the outer face is
visible from above or from below.

Corollary 5.1. If the vertex v is on the outer face and has an outgoing (incoming) edge ¢
that is on the outer face, then v is visible from above (below).

Proof. Since e is on the outer face, there is a region either to the left or to the right of ¢
that is part of the outer face. We can place the point p from Lemma 5.2 in this region,
and draw a straight line from p to v. Since € is an outgoing edge, this region will be
above v, and hence p will be above v. Thus by Lemma 5.2, v is visible from above. [

Corollary 5.2. If v is on the outer face, it is visible from above or from below (or both).

Proof. Given that v is on the outer face, let ¢ be an edge on the outer face incident to v.
Either € is an incoming edge or an outgoing edge. In the former case, v is visible from
below by Corollary 5.1, and in the latter case, v is visible from above. O

When showing that G is upward planar, we will generally proceed by drawing G,
and G5, creating the edge {v1,v,}, and contracting this edge using the results from the
previous section. When we draw G and G2, we will always draw G; completely within
a face of G, or vice versa. We can always draw (; within a face F' of G5 as follows:
given a drawing of GG; and a drawing of G5, pick a region within F' and apply the scale
transformation to the drawing of G; until it fits within this region.
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Figure 5.8: Drawing G when v, is a source.

Remark 5.1. In a planar drawing ¢ of GG, G; may be drawn entirely within a single face
of G4, or G; may be split among several faces of Go. However, if v; is not a cutvertex, G,
must be drawn entirely within a single face of G,. Otherwise, we take w; and w, to be
vertices of (G; that are drawn in different faces of G5. Since v; is not a cutvertex, there
is a path in G; from w; to w, that does not contain v;. However, since this path goes
from one face of G5 to another, it must either cross some edges of G5, or share common
vertices with G,. In the first case, this contradicts the planarity of ¢, and in the latter
case, this contradicts the fact that G, and G, are connected only at a single vertex.

We are now ready to give conditions under which G is upward planar, given that G,
and G, are upward planar.

Lemma 5.3. If v; is a source and is visible from below with embedding 'y and outer face
Fi, then G is upward planar.

Proof. Given an upward planar drawing of G5, we can draw G, in a face that is above vs,
as defined in Remark 2.1. Since v, is visible from below, we can draw a monotone curve
(edge) from v, to v;. We then have the condition needed to apply Theorem 4.1, so we
can contract the edge (v, v1), giving us an upward planar graph, G. This construction
is shown in Figure 5.8a. O

And by symmetry, we have the following:
Corollary 5.3. If v, is a sink and is visible from above in Ty, then G is upward planar.

Next, we show that if v; is a source but is not visible from below, we can still join
obtain an upward planar graph if v, is visible from above.

Lemma 5.4. If v, is a source and vs is visible from above in I'y, then G is upward planar.
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Proof. Since G, is upward planar, we have an upward planar drawing of G;. We can
then draw G, in the face below v, and add the edge (v,, v1). Then by Theorem 4.1, we
can contract this edge and obtain an upward planar drawing of G. This construction is
shown in Figure 5.8a. O

We can show that if both v; and v, are sources and one of these is on the outer face,
then G is upward planar.

Lemma 5.5. If v; and v, are sources and v, is on the outer face Fy, then G is upward
planar.

Proof. Consider the upward planar embedding I'; of G;. If v; is visible from below, then
G is upward planar by Lemma 5.3. Otherwise, by Lemma 5.2, v; is visible from above.
Then by Lemma 5.4, with the roles of G; and G reversed, G is upward planar. O

Using this lemma, combined with Lemma 5.1, we have a necessary and sufficient
condition for the upward planarity of G when both v; and v, are sources. By symmetry,
we have the same condition for when v, and v, are both sinks.

Theorem 5.1. If v, and v, are both sources (sinks), then G is upward planar if and only
if at least one of G or G5 has an upward planar drawing in which v, or v, is on the outer
face.

Now we consider the case where v, is a source or sink, but v, is not.

Lemma 5.6. If v, is a source, G; does not have an upward planar embedding in which
vy is visible from below, v, is not a cutvertex, and G5 does not have an upward planar
embedding in which v, is visible from above, then G is not upward planar.

Proof. We will first show that we can assume without loss of generality that v; is not a
cutvertex of v;, which implies, by Remark 5.1, that G; must be drawn in one face of G,.
We then consider the faces in which G; can be drawn and in each case show that either
G is not upward planar, or that v, is visible from below.

To show that we can assume that v; is not a cutvertex of G, we show that if v, is a
cutvertex, we can find a subgraph G| of GG; that can take the place of G; but in which v,
is not a cutvertex. We can then complete the proof, using GG in place of Gy, and if the
graph G’ that we obtain by joining G} and G is not upward planar, then G cannot be
upward planar since G’ is a subgraph of G. Note that since G/ is a subgraph of Gy, v; is
still a source, and G is upward planar.

To find the subgraph G, we consider the & components Ay,..., Ay of G; that we
obtain by removing v;. Now we create the subgraphs H, ..., H, where H; is the sub-
graph of G; induced on V(H;) U {v,}. Intuitively, H; is the subgraph that we obtain by
“adding back” v; into A;. We will show that one of these H;’s can take the place of G,
in our proof. That is, we will show that our requirement for GG;, that it does not have
an upward planar embedding in which v; is visible from below, holds for one of the
H;’s. If not, each H; has an embedding in which v, is visible from below. Then we
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can draw each component H; independently, and create a new vertex v that is drawn
below the drawings of each component. Since v, is visible from below in each compo-
nent, we draw an edge from v to the v; of each component. We can then contract each
of these edges using Theorem 4.1. This produces an upward planar drawing of G; in
which v = v; is visible from below, contradicting our assumption that v; is not visible
from below in G;. Therefore one of the H;’s must not have an embedding in which v, is
visible from below, and we take this H; to be our GG}. Thus, we can assume without loss
of generality that v; is not a cutvertex of G;.

We now show that G is not upward planar. By Remark 5.1, since neither v; nor v,
is a cutvertex, (G; is drawn entirely within a single face of G5, and G is drawn entirely
within a single face of G;. We now consider the possible faces of G5 in which G; can be
drawn by looking at the directions in which the faces can be, as defined in Remark 2.1.
Let P be the face of G; in which G, is drawn, and let R be the face of GG, in which G is
drawn. Let 7; and 7, be the edges on the face P that are incident to vy, and let p; and p,
be the edges on the face R incident to v,. Since v; is a source, we know that 7; and 7
must both be outgoing edges.

First, we consider the case where R is below v, = v; with p; and p; both being
incoming edges. But m; and 7w, are outgoing edges of v;, and hence must be drawn
above v; in an upward planar drawing, and so cannot be drawn in R.

Next, we consider the case where R is to the right or to the left of v, with one of p;
and p, being an incoming edge and the other being an outgoing edge. Without loss of
generality, we say that p; is an incoming edge and that p, is an outgoing edge. Since v is
not visible from above, and p, is an outgoing edge, Corollary 5.1 implies that R cannot
be the outer face of G5. Now, if we consider the drawing ¢ induced on R, R is a single
cycle by definition of a face, and hence every vertex is on the outer face. Therefore, by
Lemma 5.1, vy is visible from below in ¢z. Since v, is visible from below, let J be a
monotone curve from vy to a point p that is below the drawing ¢ . We then consider the
drawing ¢rug,. Since R is not the outer face of G5 in ¢ and G; must be drawn inside
R, G will not intersect the curve J, and hence v is still visible from below in pg ¢,
(Figure 5.9). However, v; = v, and hence v, is visible from below, contradicting our
assumption that v; is not visible from below.

Similarly, we can show that if R is above v, with p; and p; both being outgoing edges,
v; must be visible from below. Therefore in all cases where G is upward planar, if v is
not visible from above, then v; must be visible from below. O

Combining the previous lemma with Lemmas 5.3 and 5.4, we have a complete char-
acterization for the upward planarity of G when v is a source in G;. Again, we can use
symmetry to obtain a similar result for when v is a sink in G;.

Theorem 5.2. If v, is a source (sink) and v, is not a cutvertex, then G is upward planar if
and only if Gy has an upward planar embedding in which v, is visible from below (above),
or Gy has an upward planar embedding in which v, is visible from above (below).

Finally, we consider the case where neither v; nor vy is a source nor a sink.
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Figure 5.9: v is visible from below in g g,

Lemma 5.7. If v; is on the outer face F; and is an endpoint of an incoming edge ¢; and
an outgoing edge ¢, such that ¢; and ¢, are edge-ordering neighbours around v, and are
both on the outer face F; of G4, then G is upward planar.

Proof. We will first show that if v, is a source or sink, then G is upward planar, which
will follow by our previous theorem. We will then show, using our edge contraction
results, that if v, is not a source nor a sink, G is upward planar.

Since v; has an incoming edge on the outer face, and an outgoing edge on the outer
face, vy is visible both from above and from below, by Corollary 5.1. Thus if v, is a
source or sink in G, then by Theorem 5.2, GG is upward planar. Therefore we consider
the case where v, has indegree and outdegree greater than 0 in G,. Without loss of
generality, we can let ¢; be the counterclockwise neighbour of ¢, around v;.

Now we consider two edges 7; and 7, incident to v, such that is 7y is an incoming
edge, m, is an outgoing edge, and m; is the clockwise neighbour of 7, in the ordering
around vy. These two edges specify a face of G, as defined in Remark 2.2. We can then
draw G in an region below vy in this face. Since ¢; is an outgoing edge from v; and is
on the outer face of 4, v; is visible from above by Lemma 5.1, and hence we can draw
a monotone curve (edge) from v; to vo. We now have the condition needed to apply
Corollary 4.2, and hence we can contract the edge (v1, v2) and obtain the upward planar
graph G. This construction is shown in Figure 5.10

U

Now we show that if the conditions given in the previous lemma are not satisfied,
G is not upward planar. However, we must also add the condition that neither v; nor
vy is a cutvertex. Figure 5.11 shows a case where the conditions of Lemma 5.7 are not
satisfied, but G is upward planar.

Lemma 5.8. Suppose that both v, and v, have indegree and outdegree greater than 0,
and that neither vy nor v, is a cutvertex. If neither G1 nor Gy has an upward planar
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Figure 5.10: Joining G; and G, when neither v; nor v, is a source nor a sink

V1 = V2
G G G

Figure 5.11: G may be upward planar if v, is a cutvertex

embedding in which v, (vs) is on the outer face F; (F») and is an endpoint of an incoming
edge ¢; and an outgoing edge ¢, such that ¢; and ¢, are edge-ordering neighbours around
vy (v2) and are both on the face F (F5), then G is not upward planar.

Proof. Suppose that G is upward planar, and let ¢ be an upward planar drawing of G.
Since v; and v, are not cutvertices, (G; is drawn entirely within a single face of G5, and
(G5 is drawn entirely within a single face of G;. We then consider the faces of G; in
which G5 is drawn, and the faces of G5 in which G, is drawn. Let P be the face of G; in
which G, is drawn, and let R be the face of G5 in which G, is drawn. Let m; and 7 be
the edges on the face P that are incident to vy, and let p; and p, be the edges on the face
R incident to vy. Then we consider the orientations of 7, 7, p; and p».

First, we consider the case where P is a face above vy = v; with 7; and 7, both being
outgoing edges of v;. In this case, P is above v; = v,. However, v, has incoming edges,
which must be drawn below v, in an upward planar drawing. Therefore this case is not
possible. By symmetry P cannot be a face below v, with 7; and 7, both being incoming
edges. Therefore one of 7; or 7, must be an incoming edge, and the other must be an
outgoing edge. Using the same reasoning, one of p; or p; must be an incoming edge, and
the other must be an outgoing edge.

By Lemma 5.1, one of P or R, say P, must be the outer face of ¢. Since P is the outer
face of G, it must also be the outer face of GG;. Therefore G; has an upward planar em-
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bedding in which v; is on the outer face P = F} and is an endpoint of an incoming edge
m and an outgoing edge 7, such that m; and 7, are edge-ordering neighbours around v,
and are both on the face F. This contradicts the assumption that /7 does not have such
an upward planar embedding, and hence G cannot be upward planar. O

We can now combine the above two lemmas to obtain a necessary and sufficient
condition for the upward planarity of G when neither v; nor v, are cutvertices.

Theorem 5.3. If both v, and v, have indegree and outdegree greater than 0 and neither v,
nor vy is a cutvertex, then G is upward planar if and only if G, or G5 has an upward planar
embedding in which v, (vs) is on the outer face F; (F») and is an endpoint of an incoming
edge ¢; and an outgoing edge ¢, such that ¢; and e, are edge-ordering neighbours around
v1 (v2) and are both on the face F (Fy), then G is not upward planar.

The three theorems in this section completely characterize when a graph G is up-
ward planar, given that G; and G, are both upward planar. Theorem 5.1 handles the
case in which both v, and v, are sources, Theorem 5.2 handles the case in which v; is a
source or sink but v, is not, and Theorem 5.3 handles the case in which neither v; nor
v is a source nor a sink. In order to determine whether or not G is upward planar, then,
it suffices to test if G; and G, have embeddings that satisfy the conditions given in the
theorems.

Unfortunately, Theorem 5.2 requires that v, is not a cutvertex, and Theorem 5.3
requires that neither v; nor v, is a cutvertex. We were unable to find a condition that
would completely characterize the upward planarity of G and would allow v; or v, to
be cutvertices.
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Chapter 6

Biconnected graphs

In this chapter, we investigate the number of possible embeddings of a biconnected
graph G. Our goal is to bound the number of possible embeddings by a function f(k),
where k is the number of triconnected components in the graph. By Theorem 1.1, we
know that a triconnected graph has a single planar embedding; it thus seems reason-
able to expect that one may be able to bound the number of possible embeddings of a
biconnected graph by a function of the number of triconnected components that make
up the graph.

Once we have such a bound, this will allow us to obtain a parameterized algorithm
for testing the upward planarity of G. For each of these embeddings, and for each of
the at most n possible outer faces, we can use the quadratic time algorithm given by
Bertolazzi et al. [4] to test whether the embedding is upward planar. Thus by running a
quadratic time algorithm f(k) - n times, we obtain a parameterized algorithm that runs
in O(f(k)n?) time.

To obtain our bound on the number of possible embeddings, we will first show that
there are at most eight possibilities for the embedding induced on two triconnected
components that share a common vertex. We then obtain a bound on the number
of possibilities for the embedding induced on ¢ triconnected components that share
a common vertex. Finally, from this we can obtain a bound on the number of possible
embeddings for G.

If we are given a planar embedding of a biconnected graph G, along with two tri-
connected components C; and C; of G that share a common vertex v, we consider the
embedding of C; U (5. In particular, we consider the edges incident to v. As we will
show below, in Lemma 6.1, the edges of C; must be consecutive in the ordering around
v, as must the edges of C5. Let m; and =, be the first and last edges of C, respectively, in
the ordering around v, and let p; and p,, be the first and last edges of C5, respectively,
around v. As shown in Remark 2.2, the edges m; and 7, define a unique face P of
and the edges p; and p,, define a unique face R of C;. We say that C; is drawn in face P
of (1, and that C; is drawn in face R of Cs.

Lemma 6.1. Given a planar embedding I" of a graph G, and two triconnected components
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C4y and Cs of G that share a common vertex v, the edges of C; (Cy) must be consecutive
around v.

Proof. Since C; and C} are triconnected components, they share at most two common
vertices; if they share three or more common vertices, we now have at least three paths
from any vertex in ' to any vertex in (5, one for each of the common vertices, which
would mean that ¢, U C, is triconnected.

Suppose that the edges of C'; are not consecutive around v. Then consider two edges
a = (v,a) and § = (v,b) of (4, such that there is an edge from C, between « and g in
the clockwise ordering around v, and there is an edge from C, between 5 and «. We
then consider the faces of Cy in which « and  are drawn. Let 7; be the first edge from
C, after « in the clockwise ordering of edges around v, and let 7, be the first edge from
C before «. Similarly, we let p; be the first edge from C; after § in the ordering around
v, and p, be the first edge from C, before 5. The pairs (71, ) and (p1, p2) each define a
face of Cy as shown in Remark 2.2. We call these faces P and R respectively.

Since (] is triconnected, there are at least three vertex-disjoint paths in €', from a to
b. Since a and b are in different faces, each of these paths must cross the boundary of P,
which is a face of (s, contradicting the fact that C; and C5 share at most two common
vertices. 0J

We will show that for all possible embeddings of G there are at most two possible
faces of C; in which C5 can be drawn, and from this we will be able to show that there
are only a limited number of possible embeddings for C; U Cs, but we must first prove a
lemma that shows that there are at most two faces that contain a given pair of vertices.
These two faces will be the two faces of C; in which C, can be drawn, or the two faces
of C5 in which C; can be drawn.

Lemma 6.2. Given a triconnected planar graph G and two vertices v and w, there is at
most one face that contains both v and w if there is no edge (v, w) or (w,v), and at most
two faces if such an edge exists.

Proof. First, we show that if G does not have the edge (v, w) or (w,v), there is at most
one face that contains both v and w. The fact that there are at most two faces if the edge
(v,w) or (w,v) exists will then follow from this.

Consider a triconnected planar graph G that does not have the edge (v, w) or (w,v),
and suppose that there are two or more faces that contain both v and w. Let P =
(m, T2, ..., m,) and R = (p1, pa2, - - ., pm) be two such faces, where the 7;’s and p;’s are the
edges that make up the faces, in clockwise order. Without loss of generality, since we
are using a circular ordering, we can let v be endpoints of =, 7,, p1, and p,,. Since w
appears on both cycles, let w be the endpoints for 7y, 711, pr, and pyi1. (See Figure 6.1.)
We will show that {v, w} is a cutset by finding vertices a and b such that every path from
a to b contains v or w.

Since we do not have the edge (v, w) or (w, v), each of the paths (71, ..., 7%), (Tkt1, - - -,
Tn)s (p1,---,pe), and (pes1, - .., pm) has length at least two, and hence contains a vertex
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Figure 6.1: Two cycles that contain both v and w

other than v or w. Let a and b be such vertices from (71, ..., 7) and (7441, ..., 7,) Te-
spectively. In particular, we can let b be an endpoint of 7 ;.

Now, consider the cycle ¥ = (7, ..., T, pes1, .-, pm). We will say that a vertex u is
“on the same side” of ¥ as b if there is a path from u to b that does not contain any of
the vertices in . This separates the vertices of G into two groups: those that are not
part of the cycle and are on the same side as b, which we will call “outside” and those
that are part of the cycle or are not on the same side as b, which we will call “inside”.
We will say that an edge is “inside” if both its endpoints are inside, and it is “outside”
otherwise. Note that no outside vertex ¢ can be drawn inside the cycle ¥. Otherwise
any path P from ¢ to b would have to cross ¥, and hence we either have an edge from
P crossing an edge from ¥, contradicting the planarity of our drawing, or else P and ¥
share a common vertex, contradicting the fact that ¢ is an outside vertex.

For any two consecutive edges ¢; and ¢, on ¥ with common vertex d, all edges be-
tween ¢; and e, in the clockwise ordering around d must be drawn inside ¥, and hence
must be inside edges. By our construction of ¥, if d is not equal to v or w, then ¢; and
€5 are consecutive edges on the face P or R, and hence ¢, is the clockwise neighbour of
e; around d. Therefore there are no edges between ¢, and ¢; in the clockwise ordering
around d, which means that for every vertex d in the cycle ¥, d not equal to v or w, all
edges incident to d are inside edges.

Note that 7, ; (an outside edge, since one of its endpoints is b) the counterclockwise
neighbour of 7, around w. As well, all edges (w, ¢) between 7,1 and py;; in the clock-
wise ordering around w must be inside edges: the cycle ¥ divides the plane into two
regions, one containing b and the other containing ¢, and so any path from b to ¢ must
cross Y. Similarly, given the edges 7; and 7;,; for all i (similarly for p; and p;;;) in the
cycle ¥, with common vertex d, all edges between 7; and 7;,; in the clockwise ordering
around d are inside edges. Since 7; and m;,; are consecutive edges in the face P, 7;,1 is
the counterclockwise neighbour of 7; around d, and hence there are no edges between
mi+1 and 7; in the ordering on d. Therefore all edges around d are inside edges. Thus,
for every vertex d in the cycle ¥, d not equal to v or w, all edges incident to it are inside
edges.
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Since the only vertices in the cycle X that can have outside edges are v or w, every
path from the inside to the outside must contain either v or w. There is at least one
vertex, a, on the inside, and one vertex, b, on the outside. Thus {v,w} is a cutset of
size two, contradicting the assertion that G is triconnected. Thus if G does not have the
edge (v, w) or (w,v), there is at most one face that contains both v and w.

Now, suppose that G has the edge (v, w), and that there are three faces that contain
both v and w. Each of these faces is a cycle in the underlying undirected graph that
contains v and w, and so we can find at least one path from v to w that does not contain
(v,w). The edge (v, w) can be part of at most two faces, and hence one of these faces
does not contain (v, w); this face gives us two paths from v to w. Therefore we have at
least four vertex-disjoint paths from v to w, and so if we remove the edge (v, w), G is
still triconnected. Removal of this edge will, at worst, merge two of the faces: the third
face cannot also contain (v,w) and hence will be unchanged. Thus this gives us two
faces that contain v and w in a triconnected planar graph that does not contain the edge
(v, w), which we know, from the first part of the proof, is not possible. O

Now we can show that there are at most two faces of C; in which C5 can be drawn.
By doing this, we will be able to show that we have a limited number of embeddings
for C 1 U CQ.

Lemma 6.3. Given a biconnected planar graph G and two triconnected components of G,
C4 and Cs, that share a common vertex v, there are at most two faces of C, in which C,
can be drawn, and vice versa.

Proof. In order to show that there is at most two faces of C; in which C5 can be drawn,
we wish to find a vertex w that must be on the same face as v in any drawing of G. Since
G is biconnected, v is not a cutvertex. Thus there is a path from C; to C that does not
contain v. Let w be the last vertex on this path that is in C}.

Since v is common to C; and C,, and the path from w to Cy does not contain any
vertices from C;, C; must be drawn in a face that contains both v and w. By Lemma 6.2,
there are at most two faces of C; that contain both v and w. Thus C5 must be drawn in
one of these two faces. O

Using this fact, we show that there are at most eight possible embeddings of C; U Cs.
These eight possibilities come from our two choices for the face of C; in which Cs is
drawn, our two choices for the face of C5 in which €} is drawn, and our choice for the
embedding of (5 in relation to C}.

Lemma 6.4. Given a biconnected planar graph G, and two triconnected components C
and Cy of G that share a common vertex v, there are at most eight possibilities for the
embedding of C; UC, in any planar drawing of G, up to reversal of all the edge orderings.

Proof. By Theorem 1.1, since each of C'; and C; is triconnected, they each have a single
planar embedding, up to reversal of all the edge orderings. Thus the only area that can
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give us a choice in the embedding is in how we combine the embeddings for C'; and Cs.
Let I'; be the embedding of €, and I'; be the embedding of Cs.

By Lemma 6.3, there are at most two possible faces of C'; in which C5 can be drawn,
and vice versa, so this gives us four possibilities.

We now have the possibility of reversing the edge orderings in the embedding Iy,
in the embedding I's, both, or neither. However, note that if we reverse the edge or-
derings in I';, we obtain the same embedding as if we reverse the edge ordering in the
embedding of I'y, up to reversal of the edge ordering in the combined embedding: given
a vertex w in C with clockwise ordering (41, ..., dx), if we reverse the edge ordering in
'y, this does not affect the ordering around w. If we reverse the edge ordering in I';, the
resulting ordering around w is (dy,...,d;). If w is in Cy, then reversing the ordering in
I’y yields the clockwise ordering (dy, ..., ;) while reversing the ordering in I'; does not
change the ordering. If w is shared by C; and (5, then let the first ¢ edges (1, ..., )
be edges from (', and the rest be edges from C5. Then if we reverse the ordering in I's,
we get the ordering (41, ..., ds, 0, ..., d¢11), and if we reverse the edge ordering in I'y, we
get the ordering (d,...,01,00401,---,0k) = (0p1,.-.,0k,0¢,...,01). Thus in all cases, the
edge ordering that we obtain by reversing I'; is the reverse of the edge ordering that we
obtain by reversing I';.

Similarly, if we reverse the edge orderings in both I'; and I';, we obtain the same
embedding as if we do not reverse the edge ordering, up to reversal of the edge orderings
in the combined embedding. This means that we only need to consider two choices:
not reversing either of the embeddings, or just reversing I';. For simplicity, we will
assume without loss of generality that in our drawing, we do not reverse either of the
embeddings. We do not lose generality since the embedding for C; that we start off with
could have been the reversal of I';.

For any vertex w that is shared between C; and C5, we can show that the above
choices determine a unique ordering of the edges around w in I'¢, ¢, By Lemma 6.1,
since ('} and C, are triconnected, the edges of C'; must be consecutive in the ordering
around w in I'¢, ¢, and the edges of C; must be consecutive. Let P = (7y, ..., m,) be the
face of €} in which we draw C5, and R = (p1, ..., p) be the face of C5 in which we draw
(4. Without loss of generality, we can let w be an endpoint of 7y, 7,, p1, and p,,. Let
D = (6y,...,0,) and E = (ey,...,€,) be the edges around w in clockwise order in C and
C, respectively. Since these are in circular order, we can let §; and §, be edges on the
face P, and ¢; and ¢, be edges on the face R. Since the edges of C'; must be consecutive,
and we are already given the clockwise ordering of the edges of C; and the edges of C5,
the ordering of the edges around w must be (7q, ..., 7, p1,..., pq)-

Therefore we have at most eight possibilities for I'c, ¢, : two possibilities for the face
of C; in which C, is drawn, two possibilities for the face of C; in which C is drawn,
and the possibility reversing or not reversing the edge orderings of Cs. O

Using the above lemma, we can see that if a biconnected graph G has k tricon-
nected components, and any vertex is shared by at most two components, G has at
most 8*~! possible embeddings, since each component adds eight times more possible
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embeddings. We now look at the case where a vertex may be shared by more than two
components.

Lemma 6.5. Given a planar biconnected graph G and k triconnected components, C1, . . .,
Cy, that share a vertex v, C; U - - - U C}, has at most (k — 1)!8*~1 possible embeddings.

Proof. If k = 1, we have at most one possible embedding. Now, suppose that we have
k triconnected components, and we are given the embedding I'¢,..uc,. In this embed-
ding, we will denote by F; ; the face of C; in which C; is drawn.

If we want to add a new triconnected component Cj.; to v, then we must determine
the position of its edges in the ordering around v. By Lemma 6.4, we add eight embed-
dings by choosing a face of C; in which C}; is drawn, choosing a face of C},; in which
(' is drawn, and choosing an embedding for C,;. Now we consider the components
that are drawn in the same face of C; as Cj;. Without loss of generality, we can assume
that these are the components C, up to Cy. Thus we need to determine the ordering of
the components Cs, ..., Cy, Cyy1 around v. Without loss of generality, we can assume
that the edges of Cs up to C; are ordered such that the edges of C;, appear first, followed
by the edges of (3, and so on until we reach the edges of C;. Then we can add the edges
of Cj,1 between any pair of components, or before C, or after C,. This gives us ¢ < k
times more possibilities.

Thus when we add component Cj,,, we add at most 8% times more possibilities,
and so by induction, if we have k¥ components, there are at most (k — 1)!8*~! possible
embeddings. O

Using this lemma, we can obtain a bound on the number of possible embeddings for
a biconnected graph that has k triconnected components.

Theorem 6.1. Given a planar biconnected graph G that has k triconnected components,
G has at most k!8%~! possible planar embeddings, up to reversal of all the edge orderings.

Proof. For each vertex v; that is shared between two or more triconnected components,
the k; triconnected components that contain v; together contribute at most (k; — 1)!8%i~!
embeddings, thus the maximum number of possible embeddings is >, (k; — 1)!8%~1,
Since k; < k for all i, we have >, (k;—1)!8%~1 < >~ (k—1)!8*~!. There are at most k such
vertices v;, and hence there are at most k terms in the summation: Y ,(k — 1)I8*"! <
k(k — 1)18*=1 = kI8k=1, Therefore the maximum number of possible embeddings is
k18k—1, O

Using this bound, we can then obtain a parameterized algorithm that tests whether
G is upward planar.

Theorem 6.2. There is an O(k!8*n?)-time algorithm to test whether a biconnected graph
is upward planar, where n is the number of vertices, and k is the number of triconnected
components.
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Proof. Our algorithm works as follows: first it divides the input graph G into tricon-
nected components. Then, for each possible embedding of GG, we test whether or not it
is upward planar.

To divide the graph into triconnected components, we can use the quadratic time
algorithm given by Hopcroft and Tarjan [20].

Now we test each possible embedding to see if it is upward planar. By Theorem
6.1, we have k!8*~! embeddings. Euler’s formula relates the number of vertices, edges,
and faces in a planar graph by the equation n — m + f = 2, where n is the number of
vertices, m is the number of edges, and f is the number of faces. Therefore, for each
embedding, there are O(n) possibilities for the outer face. From Bertolazzi et al. [4], we
have an algorithm that takes O(n?) time to determine whether a given embedding and
outer face correspond to an upward planar drawing. Thus we can run the algorithm for
each possible embedding and outer face, giving a time complexity of O(k!8*n?). O

We now have a fixed-parameter algorithm for determining whether a biconnected
graph is upward planar, with the parameter being the number of triconnected compo-
nents. Note, however, that our bound on the number of possible embeddings is, in
many cases, much larger than the actual number of possible embeddings, as can be
seen in the proof of Theorem 6.1. For example, if every vertex is common to at most two
triconnected components, we have only 8! possible embeddings, rather than k!8*~1,

Notice that the proof of Theorem 6.1 does not depend on upward planarity. There-
fore it could be applied to other graph drawing problems in which we have an algorithm
that solves the problem given a specific embedding.
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Chapter 7

Conclusions and future work

In this thesis, we first investigated contracting an edge in an upward planar graph.
Using these results, we then showed conditions under which joining two upward planar
graphs at a single vertex yields a new graph that is upward planar. And finally, we
showed that for a biconnected graph, there is a parameterized algorithm for testing its
upward planarity where the parameter is the number of triconnected components. Thus
we were able to show a successful application of parameterized complexity technique
to graph drawing. In more detail:

In Chapter 4, we considered the effect of contracting an edge in an upward planar
graph, and completely characterized the conditions under which contracting an edge
results in an embedding that is still upward planar. Given an upward planar embed-
ding I' of a graph G and an edge ¢ of G that we wish to contract, we showed that we
can determine whether or not I' /e is an upward planar embedding based on the orienta-
tions of the clockwise and counterclockwise neighbours of e. We gave conditions under
which I' /e is always an upward planar embedding, under which I' /¢ is never an upward
planar embedding, and under which I'/¢ is an upward planar embedding if and only if
the graph produced by reversing the orientation of ¢ is upward planar. These conditions
are summarized in Table 4.1.

In Chapter 5, we then investigated the conditions under which joining two upward
planar graphs G, and G, produces an upward planar graph G. The way in which we
joined GG; and G5, was by taking a vertex v; from G and a vertex v, from G5 and identify-
ing them. To prove the conditions under which G was upward planar, we showed that
we could draw each graph separately, draw an edge from v; to vy, and contract the edge.
Using our edge contraction results, we were able to then conclude that the resulting
graph was upward planar. The results from Chapters 4 and 5 are extensions of results
given by Hutton and Lubiw [22].

Finally, in Chapter 6, we showed that a biconnected graph has at most k!8*~! possible
embeddings, where k& is the number of triconnected components. From this result,
we then obtained a parameterized algorithm, where the parameter is the number of
triconnected components, by testing all possible combinations of embeddings I' and
outer faces F' to see if there is an upward planar drawing whose embedding is I and
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whose outer face is F.

Our parameterized algorithm only works on biconnected graphs; an obvious exten-
sion of our work is to find a parameterized algorithm that can handle general graphs.
It may be possible to combine the graph joining results with our biconnected compo-
nents algorithm to achieve this: our graph joining results give conditions under which
two upward planar graphs with given embeddings can be joined together to obtain a
new upward planar graph. Since our biconnected components algorithm runs through
all possible embeddings for a biconnected graph, we can test whether there is an em-
bedding that, in addition to being upward planar, satisfies the conditions required for
joining it to another biconnected component. However, we have two difficulties that
we will have to overcome. The first is that the condition given in Theorem 5.2 depends
on determining if certain vertices are visible from above or below; we do not yet have
an algorithm that can determine whether a given embedding has a drawing in which a
given vertex is visible from above or below. The second difficulty is that Theorems 5.2
and 5.3 require that the vertex at which we joint the two subgraphs is not a cutvertex
in either subgraph; if we have a vertex that is common to three different biconnected
components, we cannot apply these theorems.

Since many interesting graphs are not upward planar, it would be natural to try
to determine how close one can get to obtaining an upward planar drawing, and turn
upward planarity testing into a maximization problem. Since upward planarity testing
is NP-complete, it is unlikely that there is an efficient solution to the maximization
problem, but this introduces more possible research directions. One possibility is in
approximation algorithms: is it possible to obtain a drawing in which the number of
upward edges is at most a fixed number away from the optimal, or at least a fixed
percentage of the optimal?

Another possibility is obtaining a parameterized algorithm that determines whether
or not a graph has a drawing in which at most ; of the edges point downward. For
k = oo, this is upward planarity testing, which is NP-complete. For k = 2, this is
trivial: take any drawing of the graph in which no edge is drawn horizontally. Either
this drawing or flip_x of the drawing has at least half the edges pointing upward. Thus it
is possible that between these two extremes, we may be able to obtain a parameterized
result.

We can also consider layered upward planar drawings. As discussed in Section
1.1.1, Jiinger et al. [23] show that testing whether a graph has a proper layered upward
planar drawing can be done in linear time. It may be possible to obtain a parameterized
result for testing whether a graph has an layered upward planar drawing in which each
edge can be draw between two vertices that are at most &k layers apart. This may be a
desirable criterion for drawings, since we often want to avoid drawings that have very
long edges; restricting the number of layers between the endpoints of the edges restricts
the lengths of the edges.

Parameterized complexity is a fairly new area and seeks to find efficient solutions to
hard problems. Many problems in graph drawing have been shown to be NP-complete,
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and so parameterized complexity may be able to offer solutions to many of these prob-
lems. Some possible parameters that we can look at are the height, width, or area of
the drawing, the maximum indegree or outdegree in a graph, the number of faces in a
planar graph, or the number of sources or sinks.
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