Research Proposal: A data structure to support the simulation of random events

Hubert Chan

December 19, 2005 – p. 1

Outline

- the random object selection problem
- reaction-diffusion equation (motivation)
- problem description
- related problems:
 - selectable partial sums
 - optimal search trees/coding systems
- research goals and approaches

Random object selection problem

- Given:
 - *n* objects
 - relative probabilities p_1, \ldots, p_n ($\sum_{i=1}^n p_i = 1$)
- Goal: select an object at random
 - the probability of selecting object k is p_k
- Static solution:
 - precompute $\sigma_k = \sum_{i=1}^k p_i$
 - generate uniform-[0, 1) random variable x
 - binary search for k s.t. $\sigma_{k-1} \leq x < \sigma_k$

Random object selection problem

- Iimitations:
 - probabilities cannot change
 - set of objects cannot change
 - all objects treated equally

Reaction-diffusion equation

- describes how a chemical (or other contaminant) behaves in a fluid
 - chemical movement (e.g. diffusion, fluid flow)
 - increases/decreases in concentration (e.g. reactions, births/deaths)

Simulating

- divide fluid into cells
- $\ensuremath{\,\bullet\,}$ concentration \rightarrow discrete number of particles
 - movement of chemical \rightarrow movement of particles between adjacent cells
 - increases/decreases in concentration \rightarrow particle "births" and "deaths"

Simulating

state: collection of all the particle counts

event: *e*, a particle movement, birth, or death

- modeled as Markov process
- time of next occurrence: exponential random variable with rate λ_e
- function of particle counts, spatial location

Straightforward simulation

- generate n exponential random variables (time of events)
- find random variable. with smallest value (select event)
- simulate event
- update rates
- re-generate random variables as needed, due to changed rates

More efficient simulation

- let $\lambda_E = \sum_{e \in E} \lambda_e$, sum of all rates
- generate one λ_E -exponential r.v. (time of events)
- select event randomly s.t. event e has probability $p_e = \lambda_e/\lambda_E$
- simulate event
- update rates

- some areas are of greater interest
 - e.g. modeling pollution in a lake \rightarrow more interested in areas close to shore
 - grid may be non-uniform

- some areas are of greater interest
 - e.g. modeling pollution in a lake \rightarrow more interested in areas close to shore
 - grid may be non-uniform
- grid may change dynamically
 - e.g. more interested in areas of high concentration
 - split/merge cells

- some areas are of greater interest
 - e.g. modeling pollution in a lake \rightarrow more interested in areas close to shore
 - grid may be non-uniform
- grid may change dynamically
 - e.g. more interested in areas of high concentration
 - split/merge cells

- some areas are of greater interest
 - e.g. modeling pollution in a lake \rightarrow more interested in areas close to shore
 - grid may be non-uniform
- grid may change dynamically
 - e.g. more interested in areas of high concentration
 - split/merge cells

- some areas are of greater interest
 - e.g. modeling pollution in a lake \rightarrow more interested in areas close to shore
 - grid may be non-uniform
- grid may change dynamically
 - e.g. more interested in areas of high concentration
 - split/merge cells

Problem description

- create a data structure
- Given: set of pairs: events and their rates $(e_1, \lambda_1), \ldots, (e_n, \lambda_n)$
- support these operations:
 random select: select an event at random, with probability λ_e/λ_E
 - **update:** set the rate of an event to a new value
 - **split:** split one event \rightarrow a number of events, distribute rate evenly
 - **merge:** merge a number of events \rightarrow one event with rate equal to sum

Problem description

- create a data structure
- Given: set of pairs: events and their rates $(e_1, \lambda_1), \ldots, (e_n, \lambda_n)$
- support these operations: **random select:** select an event at random, with probability λ_e/λ_E
 - update: set the rate of an event to a new value
 - **split:** split one event \rightarrow a number of events, distribute rate evenly
 - **merge:** merge a number of events \rightarrow one event with rate equal to sum
 - **insert**: add a new event along with its rate
 - delete: remove an event along with its rate

Selectable partial sums

- related to simple random object selection problem
- given non-negative keys a_1, \ldots, a_n
- support these operations:
 update: set the value of a key to a new value
 sum: given k, calculate σ_k = Σ^k_{i=1} a_i
 select: given target t, find k such that σ_{k-1} ≤ t < σ_k
- to solve random object selection problem:
 - probabilities $p_i \leftrightarrow a_i$
 - uniform-[0, 1) random variable $x \leftrightarrow t$

Binary trees and selectable partial sums

simplest sub-linear data structure

Previous work on selectable partial sums

Pătrașcu and Demaine: $\Theta(1 + \lg n / \lg(b/\delta))$ on *b*-bit machine, δ -bit additive changes (upper and lower bounds)

- **Raman, Raman, Rao:** succinct data structure kn + o(kn)space, $O(\lg n / \lg \lg n)$ time
- **Hon, Sadakane, Sung:** keys up to $O(\lg \lg n)$ bits, trade off between update and queries
- **Moffat:** $O(\log(1+k))$ time to update, sum, or select *k*th key a_k
- Hampapuram and Fredman: updates and sums have different probabilities, but does not support selections

Optimal search trees/coding systems

- use a tree to solve selectable partial sums
- consider different access probabilities
- optimal search trees: minimize expected cost for a search
 - entropy $H = \sum_{i=1}^{n} p_i \log 1/p_i$
 - expected search time: between $H \log H \log e + 1$ and H + 2
- some coding systems (e.g. Huffman): correspondence with trees
 - also tries to minimize expected access cost

Faller, Gallager, Knuth: dynamic Huffman codingVitter: improved FGK algorithmGagie: dynamic Shannon coding

Research goals

support the operations with the following running times:

```
select: O(\log 1/p)
update: O(\log 1/p), or maybe O(f(\Delta \lambda) \log 1/p)
split: ?
merge: ?
insert: O(\log 1/p)
delete: O(\log 1/p)
```

Splitting

under a standard tree: trivial

(8)

Splitting

under a standard tree: trivial

Splitting

- under a standard tree: trivial
- harder if tree is stored in special structure (e.g. Vitter), or data structure has other constraints

Merging

- harder than splitting
- $\, \bullet \,$ if nodes to be merged have common parent $\rightarrow \, easy$

Merging

- harder than splitting
- $\, \bullet \,$ if nodes to be merged have common parent $\rightarrow \, easy$

 $\underline{8}$

Merging

- harder than splitting
- ${\scriptstyle \bullet} {}$ if nodes to be merged have common parent $\rightarrow easy$
- otherwise, need to remove old nodes, insert new node \rightarrow minimize time

• if events on same level:

• if events on same level:

• if events on same level:

- try to adapt previous work
 - Hampapuram and Fredman: consider different probabilities, but do not support needed operations
 - coding systems
 - support updating weights, but only increment/decrement by one $\rightarrow O(\Delta \lambda \log 1/p)$
 - also can support insert/delete, but too slow

- group nodes according to rate
- put each group in a balanced tree

- B-tree-like structure
- elements in each node are within a range of rates

- divide space into cells
- similar to quad trees
- need further research

Summary

- random object selection problem with split and merge
- speed up simulation of reaction-diffusion equation
- related to partial sums, optimal search trees, coding systems
 - starting point in our research
- other approaches based on
 - grouping nodes by rates
 - B-trees
- quad trees