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Random object selection problem

Given:

n objects

relative probabilities p1, . . . , pn (
∑n

i=1
pi = 1)

Goal: select an object at random

the probability of selecting object k is pk

Static solution:

precompute σk =
∑k

i=1
pi

generate uniform-[0, 1) random variable x

binary search for k s.t. σk−1 ≤ x < σk
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Random object selection problem

limitations:

probabilities cannot change

set of objects cannot change

all objects treated equally
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Reaction-diffusion equation

describes how a chemical (or other contaminant)
behaves in a fluid

chemical movement (e.g. diffusion, fluid flow)

increases/decreases in concentration (e.g.
reactions, births/deaths)
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Simulating

divide fluid into cells

concentration → discrete number of particles

movement of chemical → movement of particles
between adjacent cells

increases/decreases in concentration → particle
“births” and “deaths”
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Simulating

state: collection of all the particle counts

event: e, a particle movement, birth, or death

modeled as Markov process

time of next occurrence: exponential random
variable with rate λe

function of particle counts, spatial location
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Straightforward simulation

generate n exponential random variables (time of
events)

find random variable. with smallest value (select
event)

simulate event

update rates

re-generate random variables as needed, due to
changed rates
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More efficient simulation

let λE =
∑

e∈E
λe, sum of all rates

generate one λE-exponential r.v. (time of events)

select event randomly s.t. event e has probability
pe = λe/λE

simulate event

update rates
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Splitting and merging

some areas are of greater interest

e.g. modeling pollution in a lake → more interested
in areas close to shore

grid may be non-uniform
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Problem description

create a data structure

Given: set of pairs: events and their rates
(e1, λ1), . . . , (en, λn)

support these operations:

random select: select an event at random, with
probability λe/λE

update: set the rate of an event to a new value

split: split one event → a number of events, distribute
rate evenly

merge: merge a number of events → one event with
rate equal to sum

split: split one event → a number of events, distribute
rate evenly

merge: merge a number of events → one event with
rate equal to sum

insert: add a new event along with its rate

delete: remove an event along with its rate
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Selectable partial sums

related to simple random object selection problem

given non-negative keys a1, . . . , an

support these operations:

update: set the value of a key to a new value

sum: given k, calculate σk =
∑

k

i=1
ai

select: given target t, find k such that σk−1 ≤ t < σk

to solve random object selection problem:

probabilities pi ↔ ai

uniform-[0, 1) random variable x↔ t
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Binary trees and selectable partial sums

simplest sub-linear data structure

71
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1 5 3 8 2 9 4 5 7 3 8 2 1 3 5 7
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Previous work on selectable partial sums

Pǎtraşcu and Demaine: Θ(1 + lg n/ lg(b/δ)) on b-bit
machine, δ-bit additive changes (upper and lower
bounds)

Raman, Raman, Rao: succinct data structure kn+ o(kn)

space, O(lg n/ lg lg n) time

Hon, Sadakane, Sung: keys up to O(lg lg n) bits, trade off
between update and queries

Moffat: O(log(1 + k)) time to update, sum, or select kth key
ak

Hampapuram and Fredman: updates and sums have
different probabilities, but does not support selections
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Optimal search trees/coding systems

use a tree to solve selectable partial sums

consider different access probabilities

optimal search trees: minimize expected cost for a
search

entropy H =
∑n

i=1
pi log 1/pi

expected search time: between H − logH − log e+ 1

and H + 2

some coding systems (e.g. Huffman): correspondence
with trees

also tries to minimize expected access cost
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Previous work on coding

Faller, Gallager, Knuth: dynamic Huffman coding

Vitter: improved FGK algorithm

Gagie: dynamic Shannon coding
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Research goals

support the operations with the following running
times:

select: O(log 1/p)

update: O(log 1/p), or maybe O(f(∆λ) log 1/p)

split: ?

merge: ?

insert: O(log 1/p)

delete: O(log 1/p)
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Splitting

under a standard tree: trivial

8
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Splitting

under a standard tree: trivial

2 2 2 2
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Splitting

under a standard tree: trivial

harder if tree is stored in special structure (e.g. Vitter),
or data structure has other constraints
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Merging

harder than splitting

if nodes to be merged have common parent → easy

3 5
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Merging

harder than splitting

if nodes to be merged have common parent → easy

otherwise, need to remove old nodes, insert new node
→ minimize time
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Merging

if events on same level:

a

e1 e2
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Merging

if events on same level:

a
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Approaches

try to adapt previous work

Hampapuram and Fredman: consider different
probabilities, but do not support needed operations

coding systems
support updating weights, but only
increment/decrement by one → O(∆λ log 1/p)

also can support insert/delete, but too slow
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Approaches

group nodes according to rate

put each group in a balanced tree

(22
, 23]

5 7 6 7 8 7 5 6
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Approaches

B-tree-like structure

elements in each node are within a range of rates

25 2025 20

5 6 8 6 8 5 7

3 3 4 4 4 3

2 2 1 2
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Approaches

divide space into cells

similar to quad trees

need further research
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Summary

random object selection problem with split and merge

speed up simulation of reaction-diffusion equation

related to partial sums, optimal search trees, coding
systems

starting point in our research

other approaches based on

grouping nodes by rates

B-trees

quad trees
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