Research Proposal: A data structure to support the simulation of random events

Hubert Chan

Outline

- the random object selection problem
- reaction-diffusion equation (motivation)
- problem description
- related problems:
- selectable partial sums
- optimal search trees/coding systems
- research goals and approaches

Random object selection problem

- Given:
- n objects
- relative probabilities $p_{1}, \ldots, p_{n}\left(\sum_{i=1}^{n} p_{i}=1\right)$
- Goal: select an object at random
- the probability of selecting object k is p_{k}
- Static solution:
- precompute $\sigma_{k}=\sum_{i=1}^{k} p_{i}$
- generate uniform-[0,1) random variable x
- binary search for k s.t. $\sigma_{k-1} \leq x<\sigma_{k}$

$$
\sigma_{k}: 0|.2| .3|.6 .8| 1
$$

Random object selection problem

- limitations:
- probabilities cannot change
- set of objects cannot change
- all objects treated equally

Reaction-diffusion equation

- describes how a chemical (or other contaminant) behaves in a fluid
- chemical movement (e.g. diffusion, fluid flow)
- increases/decreases in concentration (e.g. reactions, births/deaths)

Simulating

- divide fluid into cells
- concentration \rightarrow discrete number of particles
. movement of chemical \rightarrow movement of particles between adjacent cells
- increases/decreases in concentration \rightarrow particle "births" and "deaths"

Simulating

state: collection of all the particle counts
event: e, a particle movement, birth, or death

- modeled as Markov process
- time of next occurrence: exponential random variable with rate λ_{e}
- function of particle counts, spatial location

Straightforward simulation

- generate n exponential random variables (time of events)
- find random variable. with smallest value (select event)
- simulate event
- update rates
- re-generate random variables as needed, due to changed rates

More efficient simulation

- let $\lambda_{E}=\sum_{e \in E} \lambda_{e}$, sum of all rates
- generate one λ_{E}-exponential r.v. (time of events)
- select event randomly s.t. event e has probability $p_{e}=\lambda_{e} / \lambda_{E}$
- simulate event
- update rates

Splitting and merging

- some areas are of greater interest
- e.g. modeling pollution in a lake \rightarrow more interested in areas close to shore
- grid may be non-uniform

Splitting and merging

- some areas are of greater interest
- e.g. modeling pollution in a lake \rightarrow more interested in areas close to shore
- grid may be non-uniform
- grid may change dynamically
- e.g. more interested in areas of high concentration
- split/merge cells

Splitting and merging

- some areas are of greater interest
- e.g. modeling pollution in a lake \rightarrow more interested in areas close to shore
- grid may be non-uniform
- grid may change dynamically
- e.g. more interested in areas of high concentration
- split/merge cells

Splitting and merging

- some areas are of greater interest
- e.g. modeling pollution in a lake \rightarrow more interested in areas close to shore
- grid may be non-uniform
- grid may change dynamically
- e.g. more interested in areas of high concentration
- split/merge cells

Splitting and merging

- some areas are of greater interest
- e.g. modeling pollution in a lake \rightarrow more interested in areas close to shore
- grid may be non-uniform
- grid may change dynamically
- e.g. more interested in areas of high concentration
- split/merge cells

Problem description

- create a data structure
- Given: set of pairs: events and their rates $\left(e_{1}, \lambda_{1}\right), \ldots,\left(e_{n}, \lambda_{n}\right)$
- support these operations:
random select: select an event at random, with probability $\lambda_{e} / \lambda_{E}$
update: set the rate of an event to a new value split: split one event \rightarrow a number of events, distribute rate evenly
merge: merge a number of events \rightarrow one event with rate equal to sum

Problem description

- create a data structure
- Given: set of pairs: events and their rates $\left(e_{1}, \lambda_{1}\right), \ldots,\left(e_{n}, \lambda_{n}\right)$
- support these operations:
random select: select an event at random, with probability $\lambda_{e} / \lambda_{E}$
update: set the rate of an event to a new value
split: split one event \rightarrow a number of events, distribute rate evenly
merge: merge a number of events \rightarrow one event with rate equal to sum
insert: add a new event along with its rate delete: remove an event along with its rate

Selectable partial sums

- related to simple random object selection problem
- given non-negative keys a_{1}, \ldots, a_{n}
- support these operations:
update: set the value of a key to a new value
sum: given k, calculate $\sigma_{k}=\sum_{i=1}^{k} a_{i}$
select: given target t, find k such that $\sigma_{k-1} \leq t<\sigma_{k}$
- to solve random object selection problem:
- probabilities $p_{i} \leftrightarrow a_{i}$
- uniform- $[0,1)$ random variable $x \leftrightarrow t$

Binary trees and selectable partial sums

- simplest sub-linear data structure

Previous work on selectable partial sums

Pǎtraşcu and Demaine: $\Theta(1+\lg n / \lg (b / \delta))$ on b-bit machine, δ-bit additive changes (upper and lower bounds)
Raman, Raman, Rao: succinct data structure $k n+o(k n)$ space, $O(\lg n / \lg \lg n)$ time
Hon, Sadakane, Sung: keys up to $O(\lg \lg n)$ bits, trade off between update and queries
Moffat: $O(\log (1+k))$ time to update, sum, or select k th key a_{k}

Hampapuram and Fredman: updates and sums have
different probabilities, but does not support selections

Optimal search trees/coding systems

- use a tree to solve selectable partial sums
- consider different access probabilities
- optimal search trees: minimize expected cost for a search
- entropy $H=\sum_{i=1}^{n} p_{i} \log 1 / p_{i}$
- expected search time: between $H-\log H-\log e+1$ and $H+2$
- some coding systems (e.g. Huffman): correspondence with trees
- also tries to minimize expected access cost

Previous work on coding

Faller, Gallager, Knuth: dynamic Huffman coding Vitter: improved FGK algorithm
Gagie: dynamic Shannon coding

Research goals

- support the operations with the following running times:
select: $O(\log 1 / p)$
update: $O(\log 1 / p)$, or maybe $O(f(\Delta \lambda) \log 1 / p)$
split: ?
merge: ?
insert: $O(\log 1 / p)$
delete: $O(\log 1 / p)$

Splitting

- under a standard tree: trivial
(8)

Splitting

- under a standard tree: trivial

Splitting

- under a standard tree: trivial
- harder if tree is stored in special structure (e.g. Vitter), or data structure has other constraints

Merging

- harder than splitting
- if nodes to be merged have common parent \rightarrow easy

Merging

- harder than splitting
- if nodes to be merged have common parent \rightarrow easy

Merging

- harder than splitting
- if nodes to be merged have common parent \rightarrow easy
- otherwise, need to remove old nodes, insert new node \rightarrow minimize time

Merging

- if events on same level:

Merging

- if events on same level:

Merging

- if events on same level:

Approaches

- try to adapt previous work
- Hampapuram and Fredman: consider different probabilities, but do not support needed operations
. coding systems
- support updating weights, but only increment/decrement by one $\rightarrow O(\Delta \lambda \log 1 / p)$
. also can support insert/delete, but too slow

Approaches

- group nodes according to rate
- put each group in a balanced tree
$\left(2^{2}, 2^{3}\right]$

$\left(2^{1}, 2^{2}\right]$
$3^{/ \backslash} 3$
6
$\left[2^{0}, 2^{1}\right]$

4

Approaches

- B-tree-like structure
- elements in each node are within a range of rates

Approaches

- divide space into cells
- similar to quad trees
- need further research

Summary

- random object selection problem with split and merge
- speed up simulation of reaction-diffusion equation
- related to partial sums, optimal search trees, coding systems
. starting point in our research
- other approaches based on
- grouping nodes by rates
- B-trees
- quad trees

