
Research Proposal: A data structure to support the
simulation of random events

Hubert Chan

December 6, 2005

1 Introduction

Consider the problem of selecting an object at random from a set of objects where each
object has a different probability of being selected. In this proposal, I describe a specific
variation of this problem, inspired by a method of simulating the reaction-diffusion
equation, and I propose to investigate creating a data structure for solving the problem
efficiently.

The proposed data structure will store events along with their rates, and will support
the following operations: selecting an event at random with probability proportional to
its rate, updating an event’s rate, splitting one event into multiple events, and merg-
ing multiple events into one event. Alternatively, instead of supporting splitting and
merging, we may support inserting and deleting events.

Our reason for supporting these operations is motivated by a method of simulating
the reaction-diffusion equation. This method will be described below. The reaction-
diffusion equation describes a model for the behaviour of chemicals or other types of
contaminants in a fluid. The equation models movement of the contaminant due to
diffusion or fluid flow, as well as increases or decreases in concentration due to, for
example, chemical reactions, or natural births and deaths in the case of a biological
contaminant.

The problem of selecting an object at random is also related to a problem known as
the selectable partial sums problem, as well as optimal search trees and coding systems,
which we will discuss later in this proposal. These problems will serve as starting
points for our research.

The organization of the rest of the proposal is as follows. First, we will describe in
greater detail the random object selection problem and the method of simulating the
reaction-diffusion equation. We will then give a more detailed description of the prob-
lem that we are examining. We will then explain the connection between the selectable
partial sums problem and the random object selection problem and give a survey of pre-
vious work on the selectable partial sums problem. Next, we will explain the connection

1



between optimal search trees and coding systems and the random object selection prob-
lem, and give a survey of previous work on optimal search trees and coding systems.
Finally, we will describe our research goals and approaches.

2 Selecting an object at random

Consider a set of n objects and a set of probabilities p1, . . . , pn, with
∑n

i=1 pi = 1, that
represents the relative probability of each object being selected. We wish to select an
object at random such that the probability of selecting the ith object is equal to pi.
Equivalently, we have a set of weights w1, . . . , wn, and the total weight w =

∑n

i=1 wi, and
we wish to select an object at random such that the ith object is selected with probability
wi

w
. We call this the random object selection problem.
This problem can be solved by generating a uniform-[0, 1) random variable x, and

determining k for which
∑k−1

i=1 pi ≤ x <
∑k

i=1 pi. When the sets of objects and probabili-

ties are fixed, finding k can be done by precomputing the partial sums σk =
∑k

i=1 pi, and
performing a binary search. However, if the set of objects or probabilities is subject to
change, we must use a different strategy.

We also note that with simple binary search, all objects are treated equally, no mat-
ter what their probability. However, if we can arrange the data such that objects that
have higher probability can be found faster, at the expense of objects that have lower
probability, we may be able to improve the expected performance.

3 Simulating the reaction-diffusion equation

The random object selection problem is a common subtask in various randomized sim-
ulations. One such simulation is a method of simulating the reaction-diffusion equa-
tion, which describes how a chemical, or other contaminant, behaves in a fluid. The
reaction-diffusion equation models the flow of the contaminant due to diffusion or fluid
flow, as well as increases or decreases in concentration. These increases and decreases
can be due to various causes. For example, the increases and decreases can be caused
by a source or sink that produces or reduces the contaminant. In the case of a chemical,
they can be caused by chemical reactions. In the case of a biological contaminant, they
can be caused by natural births and deaths.

To simulate the behaviour of the contaminant, we first divide the fluid into cells
using a grid, and by representing the concentration of the contaminant in each cell
as a discrete number of particles. Thus movement of the contaminant through the
fluid is modeled by movement of particles between neighbouring cells, and increases or
decreases in concentration are modeled by particle “births” and “deaths”. Mathematical
treatments of this method of simulation and variants, showing convergence results as
the cell size approaches zero, are given by Arnold and Theodosopulu [AT80], Blount

2



[Blo96], and Kouritzin and Long [KL02]. These results are beyond the scope of this
proposal.

The state of the simulation refers to the collection of all particle counts in all cells.
An event refers to the movement of a particle from one cell to an adjacent cell, the
birth of a particle in a cell, or the death of a particle. The events are modeled as a
Markov process: the occurrence of an event depends only on the current state, and not
on any previous events. The time until the occurrence of a single event e, whether it
be a particle movement, birth, or death, is an exponential random variable with rate λe.
Intuitively, this means that the expected value of the time until the occurrence of the
event e is 1

λe
. The rate λe is a function of the particle counts: the birth and death rates

are functions of the particle count of the cell in which the birth or death is to occur, and
the rate for a particle movement is a function of the difference in concentration between
the source and destination cell. The rates could also be functions of the spatial location
of the cells.

The straightforward method of simulating the set of events is to, for each event e,
generate a λe-exponential random variable to determine the time of the next occurrence
of e. We then determine which event will occur next by finding the event whose ran-
dom variable has the smallest value. We then simulate the event, which causes the
particle counts to change in some cells, and hence causes some of the rates to change.
Thus we may need to regenerate some of our λe-exponential random variables before
we determine the time for the next event to occur.

However, there is a faster method of determining the time of occurrence of the next
event. Due to properties of the exponential distribution, the time until the occurrence
of any event is also an exponential random variable, with rate λE =

∑
e∈E λe, where E

is the set of all events. As well, given that some event has occurred, the probability
that the event that occurred was event e is pe = λe

λE

. Thus to determine the time of
the next event, we only need to generate a λE-exponential random variable, and to
determine which event had occurred, we select an event randomly according to their
relative probabilities pe by solving the random object selection problem.

In order to obtain an efficient simulation, therefore, we need a data structure that
allows us to store the rates in order to efficiently select an object at random, and to
update the rates.

In our simulation, some areas may be of greater interest than others. For example, if
we are modeling the behaviour of pollution in a lake or other body of water, we may be
more interested in the areas close to shore, near populated areas. In order to conserve
memory, then, our grid may not be uniform; areas of greater interest may have a finer
grid, while areas of lesser interest may have a coarser grid. This allows us to conserve
memory without sacrificing the accuracy of the simulation in the areas of interest. Our
areas of interest may also change dynamically. For example, we may be more interested
in areas with higher concentration of chemicals, and less interested in areas with little
or no concentration. Since the concentration in the fluid changes over time, we may
wish to be able to dynamically adjust our grid. Thus we wish to be able to split cells,

3



if their concentration is high, or merge neighbouring cells, if their concentration is low.
Thus our data structure needs to be able to support splitting and merging of cells, in
addition to selecting and updating. When splitting, we may either split along only one
dimension at a time, or we may split along all dimensions at the same time. We will
refer to the cells that we obtain from splitting as a mergable set. When merging, we only
merge cells if they form a mergable set.

4 Problem description

We now describe in detail the abstract data type that we wish to construct. Given a set
of events e1, . . . , en with their rates λ1, . . . , λn, we wish to be able to randomly select an
event proportionally according to the set of rates, such that the event ek is selected with
probability λk

λE

where λE =
∑n

i=1 λi. We also wish to modify the set of rates and events,

and we wish to perform our selections and modifications efficiently by minimizing the
expected time required for each operation.

In particular, the goal is to design a data structure for storing rates that efficiently
supports the following operations:

1. select: select an event at random such each event is selected with probability λk

λE

;

2. update: set the rate of an event to a new value;

3. split: split one event into a number of new events, distributing the rate of the old
event evenly among the new events; and

4. merge: merge a number of events into one new event, where the rate of the new
event is equal to the sum of the old events.

If we cannot obtain a data structure that supports splitting and merging natively,
these operations can also be simulated using two other operations:

5. insert: add a new event and its associated rate; and

6. delete: delete an event and its associated rate.

We can simulate splitting and merging by deleting the old event(s), and inserting the
new event(s), hence supporting insertions and deletions may be sufficient. However,
it is most likely that such an arrangement would give worse performance than a data
structure that supports splitting and merging natively.

5 The selectable partial sums problem

Let us consider again the basic random object selection problem, a simplified version
of the problem that we are trying to solve in which we only need to support the select

4



71

35 36

15 20 20 16

6 11 11 9 10 10 4 12

1 5 3 8 2 9 4 5 7 3 8 2 1 3 5 7

Figure 1: Answering a sum query. The arrow indicates the sum that we want to deter-
mine. The square nodes are the ancestors of the leaf k. The shaded nodes are the nodes
whose weights we add together to determine the sum.

and update operations. This problem is related to the selectable partial sums prob-
lem, which is defined as follows. We are given a sequence of n non-negative integers
a1, . . . , an, which we will call the keys, we must support the following operations:

1. update: change the value of a key;

2. sum: given k with 1 ≤ k ≤ n, calculate the partial sum σk =
∑k

i=1 ai; and

3. select: given a target value t, find the value k for which σk−1 ≤ t < σk.

Thus, for the random object selection problem, to pick a random object, we let ai = pi,
and let our uniform-[0, 1) random variable x be our target value t.

The simplest sub-linear data structure for supporting selectable partial sums is a bal-
anced binary tree, in which each operation takesO(logn) time, and most of the previous
work in this area is based on this idea. We store the numbers a1, . . . , an in the leaves
of the tree, and each interior node stores the sum of the leaves in its subtree. We will
refer to this sum as the node’s weight. Thus an update can be performed by updating
the corresponding leaf and the weight of all its ancestors. To find a sum σk, we find
all ancestors of the leaf k, and sum together the weights of all the left children of the
ancestors, provided that the left child is not also an ancestor, plus the weight of the leaf
itself. (See figure 1.) To perform a selection, we proceed recursively starting from the
root: if our target t is less than the weight of the left child, we recurse on the left subtree;
if t is greater than the weight of the left child w, we set t ← t − w, and recurse on the
right subtree.

Pǎtraşcu and Demaine [PD04] give an optimal data structure for the partial sums
with select problem: on a b-bit machine, when updates are limited to δ-bit additive
changes, both updates and queries can be done in Θ(1 + lg n/ lg(b/δ)) time. They also
prove matching lower bounds. The bounds that they give are amortized.

Raman, Raman, and Rao [RRR01] give a succinct data structure, which uses only
kn + o(kn) space, and takes O(lgn/ lg lg n) worst-case time for each operation. A suc-

5



cinct data structure is one that has size close to the information-theoretic lower bound.
They also consider a succinct data structure that has different time bounds for updates
and queries in the case where all the integers are of size 1 bit. For any parameter u,
lg n/ lg lg n ≤ u ≤ nε, updates can be performed in O(u) amortized time, and a sum can
be calculated in O(logu n) worst-case time. Hon, Sadakane, and Sung [HSS03] improve
on this result by allowing the integers to have size up toO(lg lg n) bits, and obtaining the
same time bounds with the improvement that the update time is now worst-case instead
of amortized. Hon et al. also extend the selectable partial sums problem to support the
insert and delete operations, and offer succinct data structures when the integers are of
size O(1) bits or, if we are given a large precomputed table, up to O(lg lg n) bits.

Moffat [Mof99] gives a simple data structure that performs updates and queries in
O(log(1 + k)) time when updating or querying the kth key ak in the sequence. Moffat
presents this result in the context of arithmetic encoding by relating the running time to
the size of the code words; he shows that if the elements are sorted in descending order
of probability, the time to perform an update or query is proportional to the number of
bits needed to encode a symbol. However, since the sequence must be kept in sorted
order, the data structure can only efficiently support increments or decrements by one.

Hampapuram and Fredman [HF98] investigate the case where updates and sum
queries have different probabilities: given pk being the probability of updating node
k, and qk being the probability of querying the partial sum σk, they examine how to
minimize the expected time for an operation. However, their data structure does not
support the select operation.

The selectable partial sums problem is a well studied problem. However, most pre-
vious work assumes that all updates and queries are equally likely. Hampapuram and
Freedman give the only analysis that considers the case where the keys have different
access probabilities.

6 Optimal search trees and coding systems

As we showed in the previous section, we can use binary trees to solve the selectable
partial sums problem. Without any knowledge of the access frequencies of the leaf
nodes, one generally attempts to construct a balanced binary tree such that each node
is accessed in O(logn) time, where n is the number of elements stored in the tree. How-
ever, if some nodes are known to be accessed with higher probability, it may make sense
to place these nodes closer to the root. In this way, there is a higher probability that a
search will take less than O(logn) time, and hence we will obtain a better running time
on average, or over a large number of searches. An optimal search tree is a search tree
that minimizes the expected time for a search, given the access probabilities for each el-
ement, and hence if we use an optimal search tree (or near-optimal search tree) to solve
the selectable partial sums problem, we will obtain a better expected running time.

Given a set of probabilities (p1, . . . , pn) that each of the elements will be accessed,
the expected search time in an optimal binary search tree is related to the entropy of the

6



set of probabilities: H =
∑n

i=1 pi log 1
pi

. The expected search time in an optimal binary

search tree is at least H − logH − log e+ 1 and at most H + 2 [Meh77].
Optimal binary trees are also related to Huffman codes [Huf52], a compression

scheme that assigns to each character a binary code word of varying length, depend-
ing on its frequency in the message, and in which no code word is a prefix of another.
For such types of compression schemes, Huffman codes are optimal; a character that
occurs with probability p has a codeword of length at most dlog 1

p
e. A (binary) code tree

can be constructed from a code in the following way: given a code word, a 0 in the word
corresponds to going left in the tree, and a 1 to going right. When we reach the end of
the code word, the node that we are at, which will be a leaf node, contains the encoded
character. Since each codeword has length at most dlog 1

p
e, the average codeword length

is at most
∑n

i=1 pidlog 1
pi

e, which is very similar to the definition of the entropy of a set of

probabilities. Thus a Huffman tree can also be used as a near-optimal search tree, and
hence can also be used in solving the selectable partial sums problem and the random
object selection problem, giving us a better expected running time than O(logn). There
are other types of coding systems as well; we are interested in those where the code
can be represented by a tree, since this allows us to solve the selectable partial sums
problem.

When compressing a message using Huffman’s algorithm, two passes over the mes-
sage are required: one pass to count the number of occurrences of each character, and
another pass to encode each character. Huffman coding also does not allow for updating
the character frequencies. Faller [Fal73] and Gallager [Gal78] independently propose a
one pass algorithm that dynamically constructs a Huffman tree; when the algorithm
processes the ith character of the message, the code tree is a Huffman tree for the first i
characters of the message. A system than creates a Huffman code dynamically is known
as a dynamic Huffman coding. Knuth [Knu85] improves the algorithm by increasing the
speed and by supporting weight decrements in addition to increments. Knuth’s algo-
rithm updates the Huffman tree by incrementing the weight of the node correspond-
ing to the next input character, along with its ancestors, and performs a number of
subtree swaps to ensure that the tree is still optimal, potentially a number of subtree
swaps equal to the length of the path from the node to the root. The algorithm thus
performs work proportional to the depth of the node, or the length of the codeword.
Knuth also shows how to support weight decrements. This algorithm is known as the
Faller-Gallager-Knuth (or FGK) algorithm, and uses on average at most 2 extra bits per
character over Huffman’s algorithm [ML97].

Vitter [Vit87] presents a similar algorithm that uses only at most 1 extra bit per
character over Huffman’s algorithm. Vitter’s algorithm differs from the FGK algorithm
in the data structure used; Vitter introduces a data structure called a floating tree that
does not store parent-child relationships explicitly. This allows greater flexibility when
performing subtree swaps in time similar to the FGK algorithm. This extra flexibility
allows Vitter to maintain an invariant that improves the code size. In fact, Vitter shows
that the code generated is optimal over all dynamic Huffman codes.

7



Gagie [Gag04] investigates dynamic Shannon coding. Shannon coding is similar in
flavour to Huffman coding, but differs in the way the code tree is generated; in the
code tree for a Shannon code, the weight of the internal node that has children with
weight wi and wj will be max(wi, wj) + 1 rather than wi +wj. In the static case, Shannon
coding is less efficient than Huffman coding in terms of code lengths. However, Gagie
shows an algorithm that produces dynamic Shannon codes, but is more efficient than
the dynamic Huffman codes.

Optimal binary trees and some coding systems allow us to obtain trees in which
leaves that have a higher probability of being accessed are closer to the root, and hence
take less time to access. We can use these trees to solve the selectable partial sums
problem. By considering the different access probabilities of the keys, this allows us to
decrease the expected cost of the operations.

7 Research goals

Similar to the cases of optimal search trees and coding systems, we are considering
different probabilities of access, and thus our goal is not to minimize the worst-case
performance of the data structure, but to minimize the expected cost of the operations.
Thus we will try to obtain running times that are expressed as functions of the proba-
bilities pe, or the rates λe, instead of just the number of elements n. Since we will have
a large sequence of operations, and we are only concerned with the total running time,
it may suffice to obtain amortized results instead of worst-case results.

Our aim is to design a data structure that supports the operations with the follow-
ing running times. From results on optimal search trees and Huffman coding, we can
obtain trees in which each element is accessed in at most log 1

pe
time, where pe is the

access probability of that element. Thus it seems reasonable to aim for updates and
selections to be performed in O(log 1

pe
) time. The time to perform an update may also be

a function of the rate change; larger updates may require more time since updates may
require the tree to be reorganized in order to ensure that events can still be selected in
O(log 1

pe
) time. We hope to also be able to perform insertion and deletion in O(log 1

pe
)

time. Of course, being able to perform insertion and deletion in O(log 1
pe

) time implies

that updates can be performed in the same time, since an update can be simulated by
deleting the old rate and inserting the new rate.

It is much less clear what running time should be expected for splitting and merg-
ing. Splitting is performed when an event’s relative probability is high, and merging is
performed when the relative probability is low; hence, we would want to obtain results
such that the operations can be performed quickly in those situations. In a tree structure
that does not use any special representation, splitting should be trivial: since we are re-
placing a node with a set of k nodes, equally weighted, and whose total weight is equal
to the weight of the original node, it suffices to make the original node be the root of a
balanced tree that contains the new nodes as leaf nodes. Thus if the original node had

8



probability pe, the new nodes will each have probability pe

k
. Since the root node of the

subtree is at depth O(log 1
pe

) in the tree, due to the fact that the original node was at that

depth in the original tree, all the leaf nodes will be at depth O(log 1
pe

+ log k) = O(log k
pe

),

and hence we will maintain the correct running time. However, if the tree is stored
in a special structure (such as the array used by Vitter [Vit87]), or if the data structure
requires the tree to satisfy other constraints, it is not as simple to modify the tree, and
hence splitting may require more time.

Merging seems more difficult than splitting. In the ideal case, if we are merging,
for example, two events that have the same parent, then we can do the reverse of what
we do for splitting; we can replace the subtree consisting of the two events and their
parent with a single node whose rate is equal to the sum of the rates of the two events.
However, if the events do not have the same parent, we will have to remove the two
events, and determine the best place to insert the new node in order to minimize the
time taken by the operation. One way to do this is, if we are only merging two events,
e1 and e2 that have the same depth in the tree, is to swap e2 with the sibling of e1 in the
tree, updating the weights of the ancestors1. (See figure 2.) We can then easily merge e1

and e2 since they now have a common parent. When we swap e2 with the sibling of e1

and update the weights of the ancestors, we need to update only the weights up to the
lowest common ancestor of e1 and e2; the nodes above the lowest common ancestor of e1

and e2 do not change weights since the set of leaf nodes in their subtrees do not change.
Thus in order to minimize the time for a merge, we wish to keep nodes that may be
merged “close” in the sense that their lowest common ancestor is as deep as possible.
This means that when we perform an update operation, and we must reorganize the
tree in order to ensure that all nodes are still accessed in O(log 1

p
) time, we may need

to be more careful in how we choose to reorganize the tree. It is unclear what type of
running time we should expect for merging.

Our goal is to not only obtain theoretical results for the running times, but to also
implement our data structure and compare its performance experimentally against us-
ing just a balanced binary tree to determine the difference in performance in real-life
situations.

7.1 Approaches

In order to obtain a data structure that satisfies the requirements, we will first look at
existing data structures and try to adapt them to suit our needs. Among the previous
work on the partial sums problem, only Hampapuram and Fredman [HF98] consider
query and update probabilities and try to minimize the expected cost. However, their
data structure does not support the select operation, nor splitting, merging, insertions,
or deletions. And while it allows the keys to be updated, it does not allow modifications

1If e1 and e2 do not have the same depth in the tree, we may not be able to swap e2 with the sibling
of e1. Otherwise this may result in a node being too deep in the tree, giving an access time of more than
O(log 1

p
).

9



a

e1 e2

a

m

e1 e2

Figure 2: Merging two events e1 and e2 that do not have the same parent. The dotted
arrow indicates the nodes that must be swapped. The node a is the lowest common
ancestor of e1 and e2. Note that after swapping e2 with the sibling of e1, the children of
a are the highest nodes for which the sets of leaf nodes in their subtrees change. The
dotted nodes indicate e1 and e2 before merging, and the node m is the node resulting
from merging e1 and e2.

of the access probabilities. Thus it seems like much work would be required to adapt
their data structure. However, it may still be worth considering some of the ideas that
they present. It may also be worth examining whether their structure can be easily
modified to support the select operation.

The data structures used in optimal search trees and coding systems already sup-
port the selecting in O(log 1

pe
) time. However, the optimal search tree structures do not

support changing access probabilities, so updates cannot be done, nor can insertions or
deletions.

The data structures used for dynamic Huffman coding support updating of weights,
but only support incrementing or decrementing weights by one. Thus an update oper-
ation would require O(∆λe log 1

pe
) total time, where ∆λe is the change in a node’s rate.

We can also perform insertions as follows: these data structures maintain a special node
called the “zero node,” which is a node with zero weight and represents all characters
that have zero weight. Whenever a character c that previously had zero weight changes
to have non-zero weight, the zero node is replaced by a subtree consisting of three
nodes, one parent and two children, all with zero weight. One of the children becomes
the new zero node and the other child becomes the new node for the character c, and
its weight is incremented. This allows us to perform insertions since it allows us to
add new nodes to the tree. As well, deletions could be performed by decrementing the
desired node until its weight becomes zero. When its weight is zero, we can then sim-
ply remove the node from the tree, replacing its parent with its sibling. However this
method will most likely be too slow for our purposes; insertions and deletions would

10



take O(λe log 1
pe

) time.

A different approach would involve grouping together nodes whose rates fall within
a given range. Within these groups, we can store the nodes using a standard balanced
binary tree — since all the nodes have similar rates, this should give us our desired
performance, as long as we can select the correct group in the desired time bounds.
Using this type of organization should provide support for selects, updates, insertions,
and deletions in O(log 1

pe
) time. However it is unclear whether this structure will sup-

port the split and merge operations, and what performance it will give if it does support
these.

Another approach would be to consider a structure similar to B-trees, with the ad-
ditional requirement that the elements or subtrees within each node all fall within a
specific range of rates. For example, we can require that every element in a node has
a rate between 2i and 2i+1. In this way, as we go from the root towards the leaves, the
weight decreases by a factor of at least two each time we go to a deeper level in the
tree, which will give us an O(log 1

pe
) time for selections. Using a B-tree-like structure

may help in performing insertions and deletions while ensuring that each event is at
the correct depth in the tree to ensure that we have an O(log 1

pe
) time for selections.

Since our data structure represents cells in a geometric space, it may also be useful
to examine previous work related to quadtrees to look for relevant methods.

We hope that by creating a data structure described in this proposal, we can obtain
speed improvements in certain randomized algorithms. In particular, we hope to obtain
significant improvements in the simulation of the reaction-diffusion equation. We will
be using results from selectable partial sums, optimal search trees, and coding systems
as starting points for our research. We also have some new approaches based on group-
ing nodes according to ranges of rates, and we also plan on examining previous work in
the area of quadtrees.

References

[AT80] L. Arnold and M. Theodosoopulu. Deterministic limit of the stochastic model
of chemical reactions with diffusion. Advanced Applied Probability, 12:367–
379, 1980.

[Blo96] Douglas Blount. Diffusion limits for a nonlinear density dependent space-time
population model. Annals of Probability, 24(2):639–659, 1996.

[Fal73] N. Faller. An adaptive system for data compression. In Record of the 7th Asilo-
mar Conferences on Circuits, Systems and Computers, pages 593–597, 1973.

[Gag04] Travis Gagie. Dynamic shannon coding. In Susanne Albers and Tomasz
Radzik, editors, Proceedings of 12th annual European Symposium on Algo-
rithms 2004, volume 3221 of Lecture Notes in Computer Science, pages 359–
370, 2004.

11



[Gal78] R. G. Gallager. Variations on a theme by Huffman. IEEE Transations on Infor-
mation Theory, IT-24:668–674, November 1978.

[HF98] Haripriyan Hampapuram and Michael Fredman. Optimal biweighted binary
trees and the complexity of maintaining partial sums. SIAM Journal on Com-
puting, 28(1):1–9, 1998.

[HSS03] Wing-Kai Hon, Kunihiko Sadakane, and Wing-Kin Sung. Succinct data struc-
tures for searchable partial sums. In Toshihide Ibaraki, Naoki Katoh, and Hi-
rotaka Ono, editors, Algorithms and Computation, 14th International Sympo-
sium, ISAAC 2003, Kyoto, Japan, December 15-17, 2003, Proceedings, volume
2906 of Lecture Notes in Computer Science, pages 505–516. Springer, 2003.

[Huf52] David A. Huffman. A method for the construction of minimum redundancy
codes. In Proceedings of the Institute of Radio Engineers, volume 40, pages
1098–1101, 1952.

[KL02] Michael A. Kouritzin and Hongwei Long. Convergence of markov chain ap-
proximations to stochastic reaction-diffusion equations. The Annals of Applied
Probability, 12(3):1039–1070, 2002.

[Knu85] Donald E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6:163–180,
1985.

[Meh77] Kurt Mehlhorn. A best possible bound for the weighted path length of binary
search trees. SIAM Journal on Computing, 6:235–239, 1977.

[ML97] Ruy Luiz Milidiú and Eduardo Sany Laber. Improved bounds on the ineffi-
ciency of length-restricted prefix codes. Technical report, Pontificia Universi-
dade Católica do Rio de Janeiro, September 1997.

[Mof99] Alistair Moffat. An improved data structure for cumulative probability tables.
Software — Practice and Experience, 29(7):647–659, 1999.

[PD04] Mihai Pǎtraşcu and Erik D. Demaine. Tight bounds for the partial-sums prob-
lem. In J. Ian Munro, editor, Proceedings of the 15th annual ACM-SIAM Sympo-
sium on Discrete Algorithms, New Orleans, January 11–13, 2004, pages 20–29.
SIAM, 2004.

[RRR01] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct dynamic
data structures. In Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Roberto
Tamassia, editors, Proceedings of 7th International Workshop on Algorithms
and Data Structures, Providence, RI, August 8–10, 2001, volume 2125 of Lec-
ture Notes in Computer Science, pages 426–437, 2001.

[Vit87] Jeffrey Scott Vitter. Design and analysis of dynamic Huffman codes. Journal
of the Association for Computing Machinery, 34(4):825–845, October 1987.

12


